Human Origins Research
Latest Publications


TOTAL DOCUMENTS

3
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

Published By Pagepress Publications

2039-1668, 2039-165x

2012 ◽  
Vol 2 (1) ◽  
pp. e1
Author(s):  
Camilo J. Cela-Conde ◽  
Marcos Nadal

Different species concepts, which broadened the scope of Mayr’s Biological Species Concept, have been put forward aiming to produce sound taxonomies of fossil taxa. Here, we propose using a simple one, the Evolutionary Species Concept, on the grounds of considering that separation of populations – disregarding other issues – is enough to describe the evolution of the human lineage. The question of the acceptable number of Middle Pleistocene hominin species is used as an example.


2011 ◽  
Vol 1 (1) ◽  
pp. e2
Author(s):  
Jeffrey H. Schwartz

The Evolutionary or Modern Evolutionary Synthesis (here identified as the Synthesis) has been portrayed as providing the foundation for uniting a supposed disarray of biological disciplines through the lens of Darwinism fused with population genetics. Rarely acknowledged is that the Synthesis’s success was also largely due to its architects’ effectiveness in submerging British and German attempts at a synthesis by uniting the biological sciences through shared evolutionary concerns. Dobzhansky and Mayr imposed their bias toward population genetics, population (as supposedly opposed to typological) thinking, and Morgan’s conception of specific genes for specific features (here abbreviated as genes for) on human evolutionary studies. Dobzhansky declared that culture buffered humans from the whims of selection. Mayr argued that as variable as humans are now, their extinct relatives were even more variable; thus the human fossil did not present taxic diversity and all known fossils could be assembled into a gradually changing lineage of time-successive species. When Washburn centralized these biases in the new physical anthropology the fate of paleoanthropology as a non-contributor to evolutionary theory was sealed. Molecular anthropology followed suit in embracing Zuckerkandl and Pauling’s assumption that molecular change was gradual and perhaps more importantly continual. Lost in translation was and still is an appreciation of organismal development. Here I will summarize the history of these ideas and their alternatives in order to demonstrate assumptions that still need to be addressed before human evolutionary studies can more fully participate in what is a paradigm shift-in-the-making in evolutionary biology.


2011 ◽  
Vol 1 (1) ◽  
pp. e1 ◽  
Author(s):  
Tanya M. Smith ◽  
Anne-Marie Bacon ◽  
Fabrice Demeter ◽  
Ottmar Kullmer ◽  
Kim Thuy Nguyen ◽  
...  

Orangutans (Pongo) are the only great ape genus with a substantial Pleistocene and Holocene fossil record, demonstrating a much larger geographic range than extant populations. In addition to having an extensive fossil record, Pongo shows several convergent morphological similarities with Homo, including a trend of dental reduction during the past million years. While studies have documented variation in dental tissue proportions among species of Homo, little is known about variation in enamel thickness within fossil orangutans. Here we assess dental tissue proportions, including conventional enamel thickness indices, in a large sample of fossil orangutan postcanine teeth from mainland Asia and Indonesia. We find few differences between regions, except for significantly lower average enamel thickness (AET) values in Indonesian mandibular first molars. Differences between fossil and extant orangutans are more marked, with fossil Pongo showing higher AET in most postcanine teeth. These differences are significant for maxillary and mandibular first molars. Fossil orangutans show higher AET than extant Pongo due to greater enamel cap areas, which exceed increases in enamel-dentine junction length (due to geometric scaling of areas and lengths for the AET index calculation). We also find greater dentine areas in fossil orangutans, but relative enamel thickness indices do not differ between fossil and extant taxa. When changes in dental tissue proportions between fossil and extant orangutans are compared with fossil and recent Homo sapiens, Pongo appears to show isometric reduction in enamel and dentine, while crown reduction in H. sapiens appears to be due to preferential loss of dentine. Disparate selective pressures or developmental constraints may underlie these patterns. Finally, the finding of moderately thick molar enamel in fossil orangutans may represent an additional convergent dental similarity with Homo erectus, complicating attempts to distinguish these taxa in mixed Asian faunas. 


Sign in / Sign up

Export Citation Format

Share Document