Preparation of Chorionic Villus Samples for Metaphase Chromosome Analysis and Chromosomal Microarray Analysis

Author(s):  
Amy Breman ◽  
Ankita Patel
2020 ◽  
Author(s):  
Chenyang Xu ◽  
Yanbao Xiang ◽  
Xueqin Xu ◽  
Lili Zhou ◽  
Huanzheng Li ◽  
...  

Abstract Background This study aimed to evaluate the applicability of chromosomal microarray analysis (CMA) for prenatal diagnosis of craniofacial malformations (CFMs). We also investigated the potential correlations between chromosomal abnormalities and CFMs. To this end, 118 fetuses with CFMs were enrolled in the study and underwent both G-banded chromosome analysis and CMA. Results Of the 118 cases in this study, 39.8% were isolated CFMs (47/118) whereas 60.2% were non-isolated CFMs (71/118). The detection rate of chromosomal abnormalities or submicroscopic chromosomal abnormalities in non-isolated CFM fetuses was significantly higher than that in isolated CFM fetuses (26/71 vs. 7/47, p = 0.01). Compared to the 16 fetuses (16/104; 15.4%) with pathogenic chromosomal abnormalities detected by karyotype analysis, CMA identified a total of 33 fetuses (33/118; 28.0%) with clinically significant findings. These 33 fetuses included cases with aneuploidy abnormalities (14/118; 11.9%), microdeletion/microduplication syndromes (9/118; 7.6%), and other pathogenic CNVs only (10/118; 8.5%). We further explored the CNV/phenotype correlation and found a series of clear or suspected dosage-sensitive CFM genes. Conclusion CMA is a rapid and reliable molecular technique to identify fetal chromosomal aberrations associated with CFMs. Identification of the genetic basis of CFMs contributes to the understanding of their pathogenesis and etiology.


2012 ◽  
Vol 15 (6) ◽  
pp. 450-457 ◽  
Author(s):  
Weimin Bi ◽  
Caroline Borgan ◽  
Amber N. Pursley ◽  
Patricia Hixson ◽  
Chad A. Shaw ◽  
...  

2020 ◽  
Author(s):  
Chenyang Xu ◽  
Yanbao Xiang ◽  
Xueqin Xu ◽  
Lili Zhou ◽  
Huanzheng Li ◽  
...  

Abstract Background: The potential correlations between chromosomal abnormalities and craniofacial malformations (CFMs) remain a challenge in prenatal diagnosis. This study aimed to evaluate 118 fetuses with CFMs by applying chromosomal microarray analysis (CMA) and G-banded chromosome analysis. Results: Of the 118 cases in this study, 39.8% were isolated CFMs (47/118) whereas 60.2% were non-isolated CFMs (71/118). The detection rate of chromosomal abnormalities in non-isolated CFM fetuses was significantly higher than that in isolated CFM fetuses (26/71 vs. 7/47, p = 0.01). Compared to the 16 fetuses (16/104; 15.4%) with pathogenic chromosomal abnormalities detected by karyotype analysis, CMA identified a total of 33 fetuses (33/118; 28.0%) with clinically significant findings. These 33 fetuses included cases with aneuploidy abnormalities (14/118; 11.9%), microdeletion/microduplication syndromes (9/118; 7.6%), and other pathogenic copy number variations (CNVs) only (10/118; 8.5%).We further explored the CNV/phenotype correlation and found a series of clear or suspected dosage-sensitive CFM genes including TBX1, MAPK1, PCYT1A, DLG1, LHX1, SHH, SF3B4, FOXC1, ZIC2, CREBBP, SNRPB, and CSNK2A1.Conclusion: These findings enrich our understanding of the potential causative CNVs and genes in CFMs. Identification of the genetic basis of CFMs contributes to our understanding of their pathogenesis and allows detailed genetic counselling.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 1123-1127
Author(s):  
Shuang Chen ◽  
Yang Yu ◽  
Han Zhang ◽  
Leilei Li ◽  
Yuting Jiang ◽  
...  

AbstractChromosomal microdeletions and microduplications likely represent the main genetic etiologies for children with developmental delay or intellectual disability. Through prenatal chromosomal microarray analysis, some microdeletions or microduplications can be detected before birth to avoid unnecessary abortions or birth defects. Although some microdeletions or microduplications of chromosome 5 have been reported, numerous microduplications remain undescribed. We describe herein a case of a 30-year-old woman carrying a fetus with a chromosome 5q21.1–q21.3 microduplication. Because noninvasive prenatal testing indicated a fetal chromosome 5 abnormality, the patient underwent amniocentesis at 22 weeks 4 days of gestation. Karyotyping and chromosomal microarray analysis were performed on amniotic fluid cells. Fetal behavioral and structural abnormalities were assessed by color and pulsed Doppler ultrasound. Clinical characteristics of the newborn were assessed during the follow-up. The left lateral ventricle appeared widened on ultrasound, but the infant appeared normal at birth. The 5q21.1–q21.3 microduplication in the fetus was inherited from his mother. There are seven genes in this duplication region, but their main functions are unclear. According to this case report, microduplication in this region could represent a benign mutation. Clinicians should pay attention to the breakpoints and the genes involved when counseling patients with microdeletions and microduplications.


2017 ◽  
Vol 20 (1) ◽  
pp. 128-131 ◽  
Author(s):  
Idit Maya ◽  
Reuven Sharony ◽  
Shiri Yacobson ◽  
Sarit Kahana ◽  
Josepha Yeshaya ◽  
...  

2014 ◽  
Vol 69 (10) ◽  
pp. 613-621 ◽  
Author(s):  
Jamie O. Lo ◽  
Brian L. Shaffer ◽  
Cori D. Feist ◽  
Aaron B. Caughey

Sign in / Sign up

Export Citation Format

Share Document