A 3-D hydrologic transport model of a water recharge system using carbamazepine and chloride as tracers

2014 ◽  
Vol 50 (5) ◽  
pp. 4220-4241 ◽  
Author(s):  
Michael Rona ◽  
Guy Gasser ◽  
Ido Negev ◽  
Irena Pankratov ◽  
Sara Elhanany ◽  
...  
1994 ◽  
Vol 29 (1-2) ◽  
pp. 277-282 ◽  
Author(s):  
D. Grotehusmann ◽  
A. Khelil ◽  
F. Sieker ◽  
M. Uhl

A System of INterconnected Infiltration POnds and Trenches (SINIPOT) is presented as an alternative to classical solutions for the extension and/or renovation of urban drainage systems in Germany. In many cities, modifications of the existing drainage network have been necessitated by restrictive pollution laws. For a catchment in the City of Gelsenkirchen, long term simulations with a hydrologic transport model have been performed for three different sanitation solutions. The most important comparison criteria are the Combined Sewer Overflow (CSO) quantities and the induced flow pattern in the receiving waters (a small creek).


1999 ◽  
Author(s):  
Bohdan Cybyk ◽  
Jay Boris ◽  
Theodore Young, Jr. ◽  
Charles Lind ◽  
Alexandra Landsberg

2019 ◽  
Author(s):  
Michael Stukel ◽  
Thomas Kelly

Thorium-234 (234Th) is a powerful tracer of particle dynamics and the biological pump in the surface ocean; however, variability in carbon:thorium ratios of sinking particles adds substantial uncertainty to estimates of organic carbon export. We coupled a mechanistic thorium sorption and desorption model to a one-dimensional particle sinking model that uses realistic particle settling velocity spectra. The model generates estimates of 238U-234Th disequilibrium, particulate organic carbon concentration, and the C:234Th ratio of sinking particles, which are then compared to in situ measurements from quasi-Lagrangian studies conducted on six cruises in the California Current Ecosystem. Broad patterns observed in in situ measurements, including decreasing C:234Th ratios with depth and a strong correlation between sinking C:234Th and the ratio of vertically-integrated particulate organic carbon (POC) to vertically-integrated total water column 234Th, were accurately recovered by models assuming either a power law distribution of sinking speeds or a double log normal distribution of sinking speeds. Simulations suggested that the observed decrease in C:234Th with depth may be driven by preferential remineralization of carbon by particle-attached microbes. However, an alternate model structure featuring complete consumption and/or disaggregation of particles by mesozooplankton (e.g. no preferential remineralization of carbon) was also able to simulate decreasing C:234Th with depth (although the decrease was weaker), driven by 234Th adsorption onto slowly sinking particles. Model results also suggest that during bloom decays C:234Th ratios of sinking particles should be higher than expected (based on contemporaneous water column POC), because high settling velocities minimize carbon remineralization during sinking.


Sign in / Sign up

Export Citation Format

Share Document