Alternative Urban Drainage Concept and Design

1994 ◽  
Vol 29 (1-2) ◽  
pp. 277-282 ◽  
Author(s):  
D. Grotehusmann ◽  
A. Khelil ◽  
F. Sieker ◽  
M. Uhl

A System of INterconnected Infiltration POnds and Trenches (SINIPOT) is presented as an alternative to classical solutions for the extension and/or renovation of urban drainage systems in Germany. In many cities, modifications of the existing drainage network have been necessitated by restrictive pollution laws. For a catchment in the City of Gelsenkirchen, long term simulations with a hydrologic transport model have been performed for three different sanitation solutions. The most important comparison criteria are the Combined Sewer Overflow (CSO) quantities and the induced flow pattern in the receiving waters (a small creek).

1984 ◽  
Vol 16 (8-9) ◽  
pp. 311-325 ◽  
Author(s):  
N B Johansen ◽  
P Harremoës ◽  
M Jensen

Overflow from combined systems constitute an increasing source of pollution of receiving waters, as compared to daily wastewater discharges which undergo treatment to a still higher extent. The receiving water problems from overflows are significant both in a long term scale (mean annual load) and in a short term scale (extreme event load). A method for computation of both annual and extreme load is presented. It is based on historical rain series and the use of a time-area model and simple pollutant mixing model in runoff calculation. Statistical calculations for both mean annual load and extreme events have been applied to the computed overflow series. Based on the computerized method simple manual calculations methods have been developed, resulting in graphs and tables for annual load and extreme load.


1993 ◽  
Vol 27 (12) ◽  
pp. 205-208
Author(s):  
Dirk-Th Kollatsch

For upgrading the urban drainage system (UDS) the reduction of pollution impacts is the priority task concerning the environmental protection of the receiving waters. With simulation models the interactions between surface, sewer systems, overflow structures and treatment facilities within the UDS can be shown. Models to simulate the pollutant impacts, transport and the effects on the receiving waters are available. In a first step a pollutant transport model of sewer systems and a model to simulate the wastewater treatment processes are connected. With these models the efficiency of upgrading measures can be checked in all parts of urban drainage systems.


1991 ◽  
Vol 24 (6) ◽  
pp. 157-163
Author(s):  
E. Ristenpart ◽  
D. Wittenberg

Impacts from combined sewer systems on receiving waters are heavily polluting a lot of small river ecosystems. A simulation model which can be used to predict the development of water quality after combined sewer overflows and other impacts from the urban drainage system has been developed. This model works with hydrodynamic flow calculation because it is applied in a system of small wetland creeks with nonstationary flow conditions. The numerical solution of the differential equations is described as well as calibration results. It is shown that water quality simulation based on the one-dimensional mass transport equation is possible for nonstationary flow conditions and is going to become very useful in urban drainage planning.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 355-359
Author(s):  
L. Fuchs ◽  
D. Gerighausen ◽  
S. Schneider

For the city of Dresden a general master plan was set up based on investigations of the hydraulic capacity of the sewer system, the loads from combined sewer overflow and the treatment plant. The total emission from combined sewer overflows and treatment plant was the main criteria for the analysis of the efficiency of different renovation alternatives. The effect of the different alternatives on the quality of the receiving waters was investigated with a water quality model and evaluated with different approaches.


2009 ◽  
Vol 2009 (2) ◽  
pp. 789-797
Author(s):  
Thomas Heinemann ◽  
Patricia Nelson ◽  
Scott Aurit ◽  
Marty Grate ◽  
Jim Theiler

1993 ◽  
Vol 27 (12) ◽  
pp. 31-70 ◽  
Author(s):  
J. Marsalek ◽  
T. O. Barnwell ◽  
W. Geiger ◽  
M. Grottker ◽  
W. C. Huber ◽  
...  

Design and operation of urban drainage systems are addressed in the context of the urban water system comprising drainage, sewage treatment plants and receiving waters. The planning and design of storm sewers are reviewed with reference to planning objectives, design objectives, flows and pollutant loads, sewer system structures and urban runoff control and treatment. The discussion of combined sewers focuses on hydraulic design of combined sewer systems, including combined sewer overflow (CSO) structures, and the use of CSO structures and storage in control of CSOs. The section on operation of sewer systems focuses on real time control, its feasibility, planning, design, operation and applications. Sewer system planning and design are generally conducted using computer modelling tools and procedures which are reviewed in the last section. A brief listing of selected models focuses on internationally used models. Finally, it was concluded that further improvements in environmental and ecological protection of urban waters is feasible only by consideration of urban drainage systems in conjunctions with sewage treatment and water quality in the receiving waters.


1999 ◽  
Vol 39 (9) ◽  
pp. 23-30 ◽  
Author(s):  
P. Willems

Data from a dense network of rain gauges in the city of Antwerp (Belgium) has been used to study the stochastic structure of spatial rainfall at the small spatial scale of small hydrographic or urban catchments. The derived spatial rainfall model contains two structures: a deterministic structure for the physical description of individual rain cells and cell clusters, and a stochastic structure for the description of the intrinsic randomness in the sequence of different rain events. Such a model forms the basis of the stochastic generation of spatial rainfall for urban catchments. Spatial rainfall generations have many applications: long-term time series of spatial rainfall can be used as input to urban drainage models for the accurate generation of runoff, or to study model-uncertainties and -biases by the simplified use of point rainfall as a model input.


2013 ◽  
Vol 68 (3) ◽  
pp. 544-551 ◽  
Author(s):  
Yang Yu ◽  
Keisuke Kojima ◽  
Kyoungjin An ◽  
Hiroaki Furumai

Combined sewer overflow (CSO) from urban areas is recognized as a major pollutant source to the receiving waters during wet weather. This study attempts to categorize rainfall events and corresponding CSO behaviours to reveal the relationship between rainfall patterns and CSO behaviours in the Shingashi urban drainage areas of Tokyo, Japan where complete service by a combined sewer system (CSS) and CSO often takes place. In addition, outfalls based on their annual overflow behaviours were characterized for effective storm water management. All 117 rainfall events recorded in 2007 were simulated by a distributed model InfoWorks CS to obtain CSO behaviours. The rainfall events were classified based on two sets of parameters of rainfall pattern as well as CSO behaviours. Clustered rainfall and CSO groups were linked by similarity analysis. Results showed that both small and extreme rainfalls had strong correlations with the CSO behaviours, while moderate rainfall had a weak relationship. This indicates that important and negligible rainfalls from the viewpoint of CSO could be identified by rainfall patterns, while influences from the drainage area and network should be taken into account when estimating moderate rainfall-induced CSO. Additionally, outfalls were finally categorized into six groups indicating different levels of impact on the environment.


1984 ◽  
Vol 15 (4-5) ◽  
pp. 333-340
Author(s):  
W. Hogland ◽  
R. Berndtsson ◽  
M. Larson

The function of combined sewer overflows (CSO) from both a quantitative and a qualitative point of view is often little known in the Nordic communities. Since large pollution loads are discharged from urban areas by CSO, it is important to consider this problem when rehabilitation plans are established. A study aiming at the estimation of yearly volumes of CSO and yearly quantities of pollution load from CSO has been carried out in the city of Malmö, Sweden. The CSO discharges into four different types of receiving waters: the channel, the harbour, the Sege River and the Öresund. Registration of frequency, duration and water volume was made at about 30 weirs at different time periods. Storm Water Management Model (SWMM) was used both to simulate single SCO events and for continuous simulation. The results from these simulations were compared with actual measurements. The total pollution load was estimated from mean concentration of pollutants from more than 100 samples taken at different weirs and CSO events. Through analysis of the occurrence of CSO in time and space, a program of priorities for the rehabilitation of the CSO-system was established.


2018 ◽  
Vol 30 ◽  
pp. 01019
Author(s):  
Dawid Łapiński ◽  
Józefa Wiater

The article presents the results of rainwater quality studies. The rainwater flowing from the surface of urbanized areas of the city of Białystok discharged into the river after they have been cleansed with separators petroleum compounds. Also discussed are issues related to with rain water and the problem to need develop them. Contaminated flushes from sealed surfaces such as street squares, sidewalks, parking lots, etc., during periods of rain or thawing, pose a serious threat to the natural environment. The work presents analyzes of such pollutants as general slurry, heavy metals, chlorides, BOD5, COD, etc., which once penetrate rainwater into Biała River. Five measurement and control points located in a typical urban drainage basin were selected for the study. The tests were taken in the spring of 2017 in two measuring series. The first series was taken during the long-term precipitation, while the second was after the almost one-month rain-free period, at the time of the first precipitation.


Sign in / Sign up

Export Citation Format

Share Document