comparison of results
Recently Published Documents


TOTAL DOCUMENTS

1432
(FIVE YEARS 132)

H-INDEX

66
(FIVE YEARS 6)

Author(s):  
P S Szulczewski

This paper contains calculations of risk for a selected damage case scenario. The calculations took place with use of a risk model designed for evaluating the safety of ships and were compared with the available and published industry standard (as included in SOLAS 2009) as well. The comparison of results is presented in the form of a discussion and concludes that exact risk levels can be obtained at any stage of the vessel's life. The currently valid method as included in SOLAS 2009 regulation provides limited information about the actual survivability of a vessel in emergency conditions. It is hence very difficult to compare the current probabilistic model with risk based survivability calculations to evaluate the actual safety provided by an investigated vessel should it subsequently be severely damaged.


2021 ◽  
Vol 24 (2) ◽  
pp. 31-34
Author(s):  
Mladen Krstić ◽  
◽  
Branislav Milenković ◽  
Đorđe Jovanović ◽  
◽  
...  

In this paper, the principles of a metaheuristic algorithm based on tunicate swarm behavior are shown. The Tunicate Swarm Algorithm (TSA for short) was used for solving problems in applied mechanics (speed reducer, cantilever beam and three-dimensional beam optimization). In the end, a comparison of results obtained by TSA and results obtained by other methods is given.


2021 ◽  
Vol 8 ◽  
Author(s):  
K. C. Bierlich ◽  
Joshua Hewitt ◽  
Clara N. Bird ◽  
Robert S. Schick ◽  
Ari Friedlaender ◽  
...  

Body condition is a crucial and indicative measure of an animal’s fitness, reflecting overall foraging success, habitat quality, and balance between energy intake and energetic investment toward growth, maintenance, and reproduction. Recently, drone-based photogrammetry has provided new opportunities to obtain body condition estimates of baleen whales in one, two or three dimensions (1D, 2D, and 3D, respectively) – a single width, a projected dorsal surface area, or a body volume measure, respectively. However, no study to date has yet compared variation among these methods and described how measurement uncertainty scales across these dimensions. This associated uncertainty may affect inference derived from these measurements, which can lead to misinterpretation of data, and lack of comparison across body condition measurements restricts comparison of results between studies. Here we develop a Bayesian statistical model using known-sized calibration objects to predict the length and width measurements of unknown-sized objects (e.g., a whale). We use the fitted model to predict and compare uncertainty associated with 1D, 2D, and 3D photogrammetry-based body condition measurements of blue, humpback, and Antarctic minke whales – three species of baleen whales with a range of body sizes. The model outputs a posterior predictive distribution of body condition measurements and allows for the construction of highest posterior density intervals to define measurement uncertainty. We find that uncertainty does not scale linearly across multi-dimensional measurements, with 2D and 3D uncertainty increasing by a factor of 1.45 and 1.76 compared to 1D, respectively. Each standardized body condition measurement is highly correlated with one another, yet 2D body area index (BAI) accounts for potential variation along the body for each species and was the most precise body condition metric. We hope this study will serve as a guide to help researchers select the most appropriate body condition measurement for their purposes and allow them to incorporate photogrammetric uncertainty associated with these measurements which, in turn, will facilitate comparison of results across studies.


Author(s):  
Zongbin Chen

Abstract We explain an algorithm to calculate Arthur’s weighted orbital integral in terms of the number of rational points on the fundamental domain of the associated affine Springer fiber. The strategy is to count the number of rational points of the truncated affine Springer fibers in two ways: by the Arthur–Kottwitz reduction and by the Harder–Narasimhan reduction. A comparison of results obtained from these two approaches gives recurrence relations between the number of rational points on the fundamental domains of the affine Springer fibers and Arthur’s weighted orbital integrals. As an example, we calculate Arthur’s weighted orbital integrals for the groups ${\textrm {GL}}_{2}$ and ${\textrm {GL}}_{3}$ .


2021 ◽  
Vol 13 (21) ◽  
pp. 11682
Author(s):  
Martin Nwodo ◽  
Chimay Anumba

The relevance of exergy to the life cycle assessment (LCA) of buildings has been studied regarding its potential to solve certain challenges in LCA, such as the characterization and valuation, accuracy of resource use, and interpretation and comparison of results. However, this potential has not been properly investigated using case studies. This study develops an exergy-based LCA method and applies it to three case-study buildings to explore its benefits. The results provide evidence that the theoretical benefits of exergy-based LCA as against a conventional LCA can be achieved. These include characterization and valuation benefits, accuracy, and enabling the comparison of environmental impacts. With the results of the exergy-based LCA method in standard metrics, there is now a mechanism for the competitive benchmarking of building sustainability assessments. It is concluded that the exergy-based life cycle assessment method has the potential to solve the characterization and valuation problems in the conventional life-cycle assessment of buildings, with local and global significance.


2021 ◽  
Vol 21 (3) ◽  
pp. 193-199
Author(s):  
O. N. Kolesnikova ◽  
O. V. Fadeikina ◽  
O. B. Ustinnikova ◽  
R. A. Volkova ◽  
A. A. Movsesyants

Phenol is used as a preservative in a number of biological products. Methods that are used for quantitative determination of phenol differ a lot. Current requirements for accredited laboratories include continuous internal quality control. Reference standards with a certified content of the analyte are an effective metrological tool for ensuring such control. The aim of the study was to develop and certify reference standards for phenolic content in biological products, based on comparison of results obtained by GLC, HPLC, spectrophotometric, and colorimetric methods. Materials and methods: diluent for allergens by (candidate reference standard), 2.5 and 5 mg/mL phenol solutions, and 2.5 mg/mL 2-phenoxyethanol solution were used in the study. The experiments were performed using spectrophotometric, colorimetric, HPLC, and GLC procedures. The statistical analysis of results included calculation of the arithmetic mean, standard deviation, coefficient of variation, and analysis of variance with Student’s t-test and Fisher’s F-test. Results: the results of phenolic content determination by the spectrophotometric, colorimetric, and HPLC methods were statistically comparable. The F value obtained for equal sample sizes (n = 40) was F = 0.9343, given the critical value Fcrit = 3.96. A reference standard certified by one of these methods can be used to control the consistency of phenol determination by a relevant method. The results of phenolic content determination by the GLC method showed statistically significantly differences: F = 17.47, given Fcrit = 3.96, which demonstrated the need for certification of another reference standard. Conclusions: two reference standards were certified in the study: reference standard 42-28-449 with the certified phenolic content of 2.56‒3.32 mg/mL, to be used with the spectrophotometric, colorimetric, and HPLC methods; and reference standard 42-28-451 with the certified phenolic content of 2.92‒3.28 mg/mL, to be used with the GLC method.


Sign in / Sign up

Export Citation Format

Share Document