scholarly journals Evaluation of the inertial dissipation method within boundary layers using numerical simulations

2015 ◽  
Vol 42 (5) ◽  
pp. 1504-1511 ◽  
Author(s):  
Aidin Jabbari ◽  
Leon Boegman ◽  
Ugo Piomelli
2018 ◽  
Vol 10 (2) ◽  
pp. 466-480 ◽  
Author(s):  
Matthew C. Wyant ◽  
Christopher S. Bretherton ◽  
Peter N. Blossey

2014 ◽  
Vol 753 ◽  
pp. 360-401 ◽  
Author(s):  
R. Vicquelin ◽  
Y. F. Zhang ◽  
O. Gicquel ◽  
J. Taine

AbstractThe role of radiative energy transfer in turbulent boundary layers is carefully analysed, focusing on the effect on temperature fluctuations and turbulent heat flux. The study is based on direct numerical simulations (DNS) of channel flows with hot and cold walls coupled to a Monte-Carlo method to compute the field of radiative power. In the conditions studied, the structure of the boundary layers is strongly modified by radiation. Temperature fluctuations and turbulent heat flux are reduced, and new radiative terms appear in their respective balance equations. It is shown that they counteract turbulence production terms. These effects are analysed under different conditions of Reynolds number and wall temperature. It is shown that collapsing of wall-scaled profiles is not efficient when radiation is considered. This drawback is corrected by the introduction of a radiation-based scaling. Finally, the significant impact of radiation on turbulent heat transfer is studied in terms of the turbulent Prandtl number. A model for this quantity, based on the new proposed scaling, is developed and validated.


2014 ◽  
Vol 760 ◽  
pp. 63-94 ◽  
Author(s):  
M. J. Philipp Hack ◽  
Tamer A. Zaki

AbstractThe influence of harmonic spanwise wall motion on bypass transition in boundary layers is investigated using direct numerical simulations. It is shown that the appropriate choice of the forcing parameters can achieve a substantial stabilization of the laminar flow regime. However, an increase of the forcing amplitude or period beyond their optimal values diminishes the stabilizing effect, and leads to breakdown upstream of the unforced case. For the optimal wall-oscillation parameters, the reduction in propulsion power substantially outweighs the power requirement of the forcing. The mechanism of transition delay is examined in detail. Analysis of the pre-transitional streaks shows that the wall oscillation substantially reduces their average amplitude, and eliminates the most energetic streaks. As a result, the secondary instabilities that precede breakdown to turbulence are substantially weakened – an effect demonstrated by linear stability analyses of flow fields from direct numerical simulations. The outcome is transition delay owing to a significant reduction in the frequency of occurrence of turbulent spots and a downstream shift in their average inception location. Finally, it is shown that the efficiency of the forcing can be further improved by replacing the sinusoidal time dependence of the wall oscillation with a square wave.


2012 ◽  
Vol 693 ◽  
pp. 28-56 ◽  
Author(s):  
Suman Muppidi ◽  
Krishnan Mahesh

AbstractDirect numerical simulations are used to study the laminar to turbulent transition of a Mach 2.9 supersonic flat plate boundary layer flow due to distributed surface roughness. Roughness causes the near-wall fluid to slow down and generates a strong shear layer over the roughness elements. Examination of the mean wall pressure indicates that the roughness surface exerts an upward impulse on the fluid, generating counter-rotating pairs of streamwise vortices underneath the shear layer. These vortices transport near-wall low-momentum fluid away from the wall. Along the roughness region, the vortices grow stronger, longer and closer to each other, and result in periodic shedding. The vortices rise towards the shear layer as they advect downstream, and the resulting interaction causes the shear layer to break up, followed quickly by a transition to turbulence. The mean flow in the turbulent region shows a good agreement with available data for fully developed turbulent boundary layers. Simulations under varying conditions show that, where the shear is not as strong and the streamwise vortices are not as coherent, the flow remains laminar.


2013 ◽  
Vol 25 (1) ◽  
pp. 27-43 ◽  
Author(s):  
MARIANITO R. RODRIGO

We revisit the American put and call option valuation problems. We derive analytical formulas for the option prices and approximate ordinary differential equations for the optimal exercise boundaries. Numerical simulations yield accurate option prices and comparable computational speeds when benchmarked against the binomial method for calculating option prices. Our approach is based on the Mellin transform and an adaptation of the Kármán–Pohlausen technique for boundary layers in fluid mechanics.


Sign in / Sign up

Export Citation Format

Share Document