streamwise vortices
Recently Published Documents


TOTAL DOCUMENTS

398
(FIVE YEARS 48)

H-INDEX

43
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Saikishan Suryanarayanan ◽  
David B. Goldstein ◽  
Colton P. Finke ◽  
Eleazar Herrera Hernandez ◽  
Edward White ◽  
...  

2022 ◽  
Author(s):  
Lauren N. Wagner ◽  
Steven P. Schneider ◽  
Joseph S. Jewell
Keyword(s):  

2021 ◽  
Vol 931 ◽  
Author(s):  
Joran Rolland

This text presents one of the first successful applications of a rare events sampling method for the study of multistability in a turbulent flow without stochastic energy injection. The trajectories of collapse of turbulence in plane Couette flow, and their probability and rate of occurrence are systematically computed using adaptive multilevel splitting (AMS). The AMS computations are performed in a system of size $L_x\times L_z=24\times 18$ at Reynolds number $R=370$ with an acceleration by a factor ${O}(10)$ with respect to direct numerical simulations (DNS) and in a system of size $L_x\times L_z=36\times 27$ at Reynolds number $R=377$ with an acceleration by a factor ${O}(10^3)$ . The AMS results are validated by a comparison with DNS in the smaller system. Visualisations indicate that turbulence collapses because the self-sustaining process of turbulence fails locally. The streamwise vortices decay first in streamwise elongated holes, leaving streamwise invariant streamwise velocity tubes that experience viscous decay. These holes then extend in the spanwise direction. The examination of more than a thousand trajectories in the $(E_{k,x}=\int u_x^2/2\,\textrm {d}^3\boldsymbol {x},E_{k,y-z}=\int (u_y^2/2+u_z^2/2)\,\textrm {d}^3\boldsymbol {x})$ plane in the smaller system confirms the faster decay of streamwise vortices and shows concentration of trajectories. This hints at an instanton phenomenology in the large size limit. The computation of turning point states, beyond which laminarisation is certain, confirms the hole formation scenario and shows that it is more pronounced in larger systems. Finally, the examination of non-reactive trajectories indicates that both the vortices and the streaks reform concomitantly when the laminar holes close.


2021 ◽  
Vol 163 (A3) ◽  
Author(s):  
R Kant ◽  
A Bhattacharyya

Leading-edge protuberances on the pectoral fin of humpback whales have been widely adopted to the designs of foils to provide superior lifting characteristics in the post-stall regimes. The present work investigates the lift, drag and flow characteristics of finite-span rectangular hydrofoils having different configurations of two protuberances over the leading edge with NACA 634-021 as the base design section. The results obtained from CFD analyses are validated using lift and drag measurements from experiments. The influence of using a transition-sensitive turbulence model on the results is investigated. It is observed that, in general, a foil with smaller separation between protuberances has better post-stall lift characteristics whereas that with protuberances at larger separation have better pre-stall characteristics. Depending on the separation between them, streamwise vortices are generated from the leading-edge protuberances. The two protuberances can restrict the zone of separation between them at high angles of attack. The influence of Reynolds number on the lifting performance is also investigated.


2021 ◽  
Vol 926 ◽  
Author(s):  
Jie Zhang ◽  
Ming-Jiu Ni

The motion of a pair of bubbles rising side by side under the influence of external magnetic fields is numerically examined. Through solving the fully three-dimensional Navier–Stokes equations, the results reveal that the bubble interactions are rather sensitive to the field direction and strength. At first, we identify that, in a hydrodynamic flow, whether the two bubbles will bounce or coalesce depends on the developments of the counter-rotating streamwise vortices during the collision. In particular, for an originally bouncing bubble pair, a streamwise magnetic field tends to promote their coalescence by weakening the strengths of the standing streamwise vortices, and such a weakening effect is caused by the asymmetric distribution of the Lorentz force in the presence of another bubble such that a torque is induced to offset the original streamwise vortices. Under a horizontal magnetic field, on the other hand, the influences are highly dependent on the angle between the bubble centroid line and the field: a transverse field or a moderate spanwise field always leads the bubble pair to coalescence while a strong spanwise field has the opposite effect. This anisotropic effect comes from the Lorentz force induced flow diffusion along the magnetic field, which not only produces two pairs of streamwise vortices at the bubble rear, but also homogenizes the pressure along the magnetic lines. As the competition between the two mechanisms varies with the magnetic direction and strength, the interaction between the bubble pair also changes. We show that the external magnetic fields control the bubble interaction through reconstructing the vortex structures, and hence the core mechanisms are identified.


Author(s):  
Aleksandra Anna Rejniak ◽  
Alvin Gatto

Trailing edge-integrated lobed-mixing geometries are proposed as a viable method for road vehicle aerodynamic drag reduction. Experiments are conducted on a 1/24th-scale model, representative of a Heavy Goods Vehicle, at a width-based Reynolds number of 2.8 × 105. A broad range of pitches and penetration angle values is examined, with detailed comparisons also made to high-aspect-ratio rear tapering. Changes to mean drag coefficients and wake velocities are evaluated and assessed from both the time-independent and time-dependent perspectives. Results show significant drag reductions for lower pitches at higher penetration angles, where the performance of regular tapering is found substantially degraded. The mechanisms responsible for drag reduction are identified to be reductions in the wake size and a shift in the vertical wake balance. The former is shown to be a result of the enhancement in inboard momentum close to the trailing edges through the generation of pairs of counter-rotating streamwise vortices, with the latter attributed to the downstream evolution of the vortices. Overall, these results identify such geometries to be suitable for improving vehicle drag while minimising the losses in internal space.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3477
Author(s):  
Filip Wasilczuk ◽  
Pawel Flaszynski ◽  
Lukasz Pyclik ◽  
Krzysztof Marugi

This paper analyses the methods for manufacturing turbine blades, focusing on the possibility of manufacturing slots in the region of the shroud. The reason for this analysis is the new flow control technique that can be used to limit the shroud leakage flow in a turbine—the air curtain. The air curtain uses a bypass slot to connect the upstream cavern of a shroud seal with the tip of a shroud fin. The bypass slot is an essential part of the solution, while at the same time introducing difficulties in the manufacturing process. Additionally, a parametric study on the bypass slot dimensions is performed using numerical simulations. The features of the numerical model and its validation against experimental data are presented. The parametric study includes the inlet and outlet dimensions, as well as the width of the slot. The most effective dimensions are shown, along with a possible explanation as to why they are the most effective. Interestingly, a slot that does not cover the whole span of the fin is more effective than a slot covering the whole span of the fin. This is caused by additional streamwise vortices that are created in the proximity of the bypass slot.


Sign in / Sign up

Export Citation Format

Share Document