scholarly journals Isostatic equilibrium in spherical coordinates and implications for crustal thickness on the Moon, Mars, Enceladus, and elsewhere

2017 ◽  
Vol 44 (15) ◽  
pp. 7695-7705 ◽  
Author(s):  
Douglas J. Hemingway ◽  
Isamu Matsuyama
Icarus ◽  
2018 ◽  
Vol 300 ◽  
pp. 287-304 ◽  
Author(s):  
Laura M. Corley ◽  
Patrick J. McGovern ◽  
Georgiana Y. Kramer ◽  
Myriam Lemelin ◽  
David Trang ◽  
...  

Geology ◽  
2005 ◽  
Vol 33 (8) ◽  
pp. 669-672 ◽  
Author(s):  
Thomas R. Watters ◽  
Francis Nimmo ◽  
Mark S. Robinson

Abstract Thirty years ago Mariner 10 revealed extensional troughs that form giant polygons in the floor material of the Caloris impact basin, Mercury. The polygonal troughs occur in the interior of the basin and overprint wrinkle ridges formed in an earlier stage of compression. In contrast, lunar and martian basins exhibit extensional troughs that are circumferential and confined to basin margins. Loading by basin-filling material can explain the extensional and compressional features seen in deformed lunar and martian basins, but not the existence of the Caloris polygonal troughs. Here we suggest that the Caloris troughs formed from late-stage basin uplift and extension due to lateral flow of a relatively thick crust toward the basin center. If such lateral flow occurs, the resulting timing, location, and magnitude of the extensional stresses predicted by our model are consistent with those inferred from the polygonal troughs. These results are not strongly dependent on the degree of lateral flow or the assumed crustal rigidity. For a dry plagioclase rheology and likely radiogenic heat fluxes, the crustal thickness around Caloris is 90–140 km. Similar late-stage uplift and extension probably do not occur in basins on the Moon and Mars because their crusts are too thin to allow analogous lateral flow.


2009 ◽  
Vol 36 (19) ◽  
Author(s):  
Yoshiaki Ishihara ◽  
Sander Goossens ◽  
Koji Matsumoto ◽  
Hirotomo Noda ◽  
Hiroshi Araki ◽  
...  
Keyword(s):  

1966 ◽  
Vol 25 ◽  
pp. 373
Author(s):  
Y. Kozai

The motion of an artificial satellite around the Moon is much more complicated than that around the Earth, since the shape of the Moon is a triaxial ellipsoid and the effect of the Earth on the motion is very important even for a very close satellite.The differential equations of motion of the satellite are written in canonical form of three degrees of freedom with time depending Hamiltonian. By eliminating short-periodic terms depending on the mean longitude of the satellite and by assuming that the Earth is moving on the lunar equator, however, the equations are reduced to those of two degrees of freedom with an energy integral.Since the mean motion of the Earth around the Moon is more rapid than the secular motion of the argument of pericentre of the satellite by a factor of one order, the terms depending on the longitude of the Earth can be eliminated, and the degree of freedom is reduced to one.Then the motion can be discussed by drawing equi-energy curves in two-dimensional space. According to these figures satellites with high inclination have large possibilities of falling down to the lunar surface even if the initial eccentricities are very small.The principal properties of the motion are not changed even if plausible values ofJ3andJ4of the Moon are included.This paper has been published in Publ. astr. Soc.Japan15, 301, 1963.


1962 ◽  
Vol 14 ◽  
pp. 441-444 ◽  
Author(s):  
J. E. Geake ◽  
H. Lipson ◽  
M. D. Lumb

Work has recently begun in the Physics Department of the Manchester College of Science and Technology on an attempt to simulate lunar luminescence in the laboratory. This programme is running parallel with that of our colleagues in the Manchester University Astronomy Department, who are making observations of the luminescent spectrum of the Moon itself. Our instruments are as yet only partly completed, but we will describe briefly what they are to consist of, in the hope that we may benefit from the comments of others in the same field, and arrange to co-ordinate our work with theirs.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


Sign in / Sign up

Export Citation Format

Share Document