Author response for "Comparison between 2‐D and 0‐D analytical models for slotless double‐sided inner armature linear permanent magnet synchronous machines"

Author(s):  
Alireza Ghaffari ◽  
Akbar Rahideh ◽  
Hamidreza Ghaffari ◽  
Amirabbas Vahaj ◽  
Amin Mahmoudi
2012 ◽  
Vol 61 (2) ◽  
pp. 211-220 ◽  
Author(s):  
Martin Hafner ◽  
David Franck ◽  
Kay Hameyer

Conformal mapping approach for permanent magnet synchronous machines: on the modeling of saturation In the electromagnetic field simulation of modern servo drives, the computation of higher time and space harmonics is essential to predict torque pulsations, radial forces, ripple torques and cogging torque. Field computation by conformal mapping (CM) techniques is a time-effective method to compute the radial and tangential field components. In the standard CM approach, computational results of cogging torque simulations as well as overload operations observe deviations to nonlinear finite element (FE) simulations due to the neglection of slot leakage and saturation effects. This paper presents an extension of the classical CM. Additional CM parameters are computed from single finite element computations so as to consider both effects listed above in the model over a wide operation range of the electrical drive. The proposed approach is applied to a surface permanent magnet synchronous machine (SM-PMSM), and compared to numerical results obtained by finite element analysis (FEA). An accuracy similar to that of FE simulations is obtained with however the low computation time that is characteristic for analytical models.


2021 ◽  
Vol 11 (1) ◽  
pp. 459
Author(s):  
Eulalie Fleurot ◽  
Franck Scuiller ◽  
Jean-Frédéric Charpentier

In this paper original analytical models to determine the electromagnetic performances of segmented permanent magnet synchronous machines (with removed active parts in the stator or the rotor) are presented. These models are adapted to PMSM with large air gap width, large diameter, a high number of poles and large angular gaps. This method based on analytical approach is validated by comparizon with a 2D Finite Element calculation (Altair FluxTM 2D) for the specifications of a large diameter, low speed tidal high power current turbine generator. The presented method allows fast and accurate evaluation of the performances of this kind of particular machine and can be used in a systematic design process.


Sign in / Sign up

Export Citation Format

Share Document