gap width
Recently Published Documents


TOTAL DOCUMENTS

520
(FIVE YEARS 127)

H-INDEX

28
(FIVE YEARS 3)

Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 68
Author(s):  
Sudhakar Molleti ◽  
David van Reenen

In commercial roofs, the presence or formation of gaps could be due to improper installation, thermal expansion, and dimensional changes in the insulation boards. The heat loss from these gaps could lead to higher thermal transmittance in the roof assembly. The current research study conducted around 70 experiments to investigate the effect of gap height, gap width and gap offset on the thermal transmittance of the roofing assembly. The measured data showed that in a staggered insulation layout with a joint offset of 610 mm (24 in), formation of 6.4 mm (1/4 in) to 12.7 mm (1/2 in) gaps at the insulation joints could contribute to an average decrease of 2% to 9% in the effective R-value of the roof assembly. As the insulation thermal resistance increases or becomes thicker, the thermal losses in the roof assembly increase. Generalized gap impact curves were developed to provide the relation between gap parameters (i.e., gap widths and height) and the thermal performance of the roof assembly. The experimental data were further analyzed using the psi factor approach of linear thermal bridging generating thermal transmittance data to support the calculation of thermal bypass from gaps in the thermal roof design.


2021 ◽  
Vol 19 (11) ◽  
pp. 01-14
Author(s):  
Thill A. Kadhum Al-Musawi ◽  
Samira Adnan Mahdi ◽  
Sundus Yaseen Hasan AL-Asadi

Researchers have been interested in studying so-called Left-Handed Metamaterials LHM, which are artificial materials. These materials have unusual characteristics, like negative permittivity and permeability, and therefore negative index. This paper has been discussed some characteristics of LHM by designing a square split ring resonator SRR and simulating with CST microwave studio (Computer Simulation Technology) to get S-parameters. The broadband frequencies (0-30) GHz were taking to specify the effective range of frequencies to work with, which was found to be between (8- 14) GHz. Then, the parameters of SRR have been varied such as split width on, gap width, metal width, rod width and metal material. The measurements show some of parameters have been affected the values of resonance frequency and the others are not. Also, the negative values of permittivity, permeability, and refractive index have been approved.


2021 ◽  
Vol 2131 (4) ◽  
pp. 042095
Author(s):  
A Sakharova ◽  
L Maslennikova

Abstract Today, the total scientific classification of solid industrial waste is absent because of their diversity. The task of universal of mineral technogenic waste recycling is complicated by the difference in their composition. The nature of the chemical elements that make up building materials is always taken into account to predict their properties. In this regard, the purpose of the study was to determine the classification characteristics of mineral technogenic waste recycling on the basis of natural-scientific ideas about the electronic structure of the atom. Studies were conducted on model systems with ceramic oxides entering s-, p-, d- elements in ceramic matrix to test the impact of the electronic structure of the mineral waste cation on operational characteristics of building materials. The experimental results showed that the strength of the samples changes in the series s → p → d of the belonging of the introduced oxide cation to the electronic family. Additionally, such an indicator as the energy-gap width was used to study the nature of the contacting solid phases. It is possible to identify which substances in technogenic raw materials have the greatest effect on the performance of the material in value of the energy-gap width.


2021 ◽  
Vol 922 (2) ◽  
pp. 184
Author(s):  
Yi-Xian Chen ◽  
Zhuoxiao Wang ◽  
Ya-Ping Li ◽  
Clément Baruteau ◽  
Douglas N. C. Lin

Abstract The tidal perturbation of embedded protoplanets on their natal disks has been widely attributed to be the cause of gap-ring structures in submillimeter images of protoplanetary disks around T Tauri stars. Numerical simulations of this process have been used to propose scaling of characteristic dust-gap width/gap-ring distance with respect to planet mass. Applying such scaling to analyze observed gap samples yields a continuous mass distribution for a rich population of hypothetical planets in the range of several Earth to Jupiter masses. In contrast, the conventional core-accretion scenario of planet formation predicts a bimodal mass function due to (1) the onset of runaway gas accretion above ∼20 Earth masses and (2) suppression of accretion induced by gap opening. Here, we examine the dust disk response to the tidal perturbation of eccentric planets as a possible resolution of this paradox. Based on simulated gas and dust distributions, we show the gap-ring separation of Neptune-mass planets with small eccentricities might become comparable to that induced by Saturn-mass planets on circular orbits. This degeneracy may obliterate the discrepancy between the theoretical bimodal mass distribution and the observed continuous gap width distribution. Despite damping due to planet–disk interaction, modest eccentricity may be sustained either in the outer regions of relatively thick disks or through resonant excitation among multiple super Earths. Moreover, the ring-like dust distribution induced by planets with small eccentricities is axisymmetric even in low viscosity environments, consistent with the paucity of vortices in Atacama Large Millimeter/submillimeter Array images.


2021 ◽  
Vol 22 (4) ◽  
pp. 638-643
Author(s):  
M. Vuichyk ◽  
L. Rashkovets’kyi ◽  
S. Lavoryk ◽  
P. Lytvyn ◽  
K. Svezhentsova

In this work morphological, X-ray structural and optical studies of CdZnTe films grown by hot wall epitaxy method at relatively low substrate temperatures were performed. Possible mechanisms and processes of self-organization that occur during the growth of such structures are considered. It is shown that at thickness of film more than 130 nm on the surface, large (lateral size 150 - 200 nm, height - up to 10 nm) and small crystals are observed. The thicknesses and energy of the band gap width of the CdZnTe films grown at different growth times were determined. It is shown that the film absorption edge in the transmission spectra depends on the film thickness and the reasons for the shift of the film absorption edge are discussed.


2021 ◽  
Vol 929 ◽  
Author(s):  
J.D. Sherwood ◽  
S. Ghosal

Electrophoresis of a tightly fitting sphere of radius $a$ along the centreline of a liquid-filled circular cylinder of radius $R$ is studied for a gap width $h_0=R-a\ll a$ . We assume a Debye length $\kappa ^{-1}\ll h_0$ , so that surface conductivity is negligible for zeta potentials typically seen in experiments, and the Smoluchowski slip velocity is imposed as a boundary condition at the solid surfaces. The pressure difference between the front and rear of the sphere is determined. If the cylinder has finite length $L$ , this pressure difference causes an additional volumetric flow of liquid along the cylinder, increasing the electrophoretic velocity of the sphere, and an analytic prediction for this increase is found when $L\gg R$ . If $N$ identical, well-spaced spheres are present, the electrophoretic velocity of the spheres increases with $N$ , in agreement with the experiments of Misiunas & Keyser (Phys. Rev. Lett., vol. 122, 2019, 214501).


2021 ◽  
Vol 2094 (2) ◽  
pp. 022043
Author(s):  
E V Sokolenko ◽  
E S Buyanova ◽  
Z A Mikhaylovskaya ◽  
G V Slusarev

Abstract Scheelite-like compounds based on SrMoO4 have been studied. Based on X–ray structural data, models of Sr1-3xBi2xMoO4 structures (x=0.2125) are constructed, at x≧0.175, a superstructural ordering is observed associated with the location of cationic vacancies. From the first principles, calculations of the density of states in the vicinity of the forbidden zone are performed. The calculated values of the band gap width were compared with the values obtained from the reflection spectra.


Author(s):  
Fernanda Rocha Chiuzuli ◽  
Bruna Fernanda Batistão ◽  
Luciano Andrei Bergmann ◽  
Nelson Guedes de Alcântara ◽  
Jorge Fernandez dos Santos ◽  
...  

2021 ◽  
Author(s):  
Xiaoming Yue ◽  
Ji Fan ◽  
Qi Li ◽  
Xiaodong Yang ◽  
Zuoke Xu ◽  
...  

Abstract In electrical discharge machining (EDM), gap control is the key to stable processing; the discharge gap plays a significant role in EDM. To determine the influence of the discharge gap on material removal and melt pool movement, which are two fundamental issues in EDM, high-speed photography and molecular dynamics (MD) simulations were used to study the discharge process. Research results demonstrate that the discharge gap has a significant influence on material removal during the discharge process. A smaller gap width produces more and larger removed materials. The influence mechanism of the gap width on material removal is explained as follows. A smaller gap width produces discharge plasma with a smaller diameter and greater heat flux. Discharge with a greater heat flux generates more material removed during the discharge process. In addition, a smaller gap width and greater heat flux produce a stronger interaction of metal vapor jets, generating a stronger shear force acting on the melt pool. The discharge gap also influences the movement of the melt pool and the final topography of the discharge crater through external pressure acting on the melt pool. Smaller gap width produces greater external pressure acting on the melt pool, generating a bowl-shaped melt pool and a discharge crater with a depression in the center and a bulge around the edge. A larger gap width produces less external pressure acting on the melt pool, generating a flat melt pool and a discharge crater with swelling in the center and a depression around the edge.


Sign in / Sign up

Export Citation Format

Share Document