scholarly journals Conformal mapping approach for permanent magnet synchronous machines: on the modeling of saturation

2012 ◽  
Vol 61 (2) ◽  
pp. 211-220 ◽  
Author(s):  
Martin Hafner ◽  
David Franck ◽  
Kay Hameyer

Conformal mapping approach for permanent magnet synchronous machines: on the modeling of saturation In the electromagnetic field simulation of modern servo drives, the computation of higher time and space harmonics is essential to predict torque pulsations, radial forces, ripple torques and cogging torque. Field computation by conformal mapping (CM) techniques is a time-effective method to compute the radial and tangential field components. In the standard CM approach, computational results of cogging torque simulations as well as overload operations observe deviations to nonlinear finite element (FE) simulations due to the neglection of slot leakage and saturation effects. This paper presents an extension of the classical CM. Additional CM parameters are computed from single finite element computations so as to consider both effects listed above in the model over a wide operation range of the electrical drive. The proposed approach is applied to a surface permanent magnet synchronous machine (SM-PMSM), and compared to numerical results obtained by finite element analysis (FEA). An accuracy similar to that of FE simulations is obtained with however the low computation time that is characteristic for analytical models.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Ahmed Hemeida ◽  
Bert Hannon ◽  
Hendrik Vansompel ◽  
Peter Sergeant

A comparison between different analytical and finite-element (FE) tools for the computation of cogging torque and torque ripple in axial flux permanent-magnet synchronous machines is made. 2D and 3D FE models are the most accurate for the computation of cogging torque and torque ripple. However, they are too time consuming to be used for optimization studies. Therefore, analytical tools are also used to obtain the cogging torque and torque ripple. In this paper, three types of analytical models are considered. They are all based on dividing the machine into many slices in the radial direction. One model computes the lateral force based on the magnetic field distribution in the air gap area. Another model is based on conformal mapping and uses complex Schwarz Christoffel (SC) transformations. The last model is based on the subdomain technique, which divides the studied geometry into a number of separate domains. The different types of models are compared for different slot openings and permanent-magnet widths. One of the main conclusions is that the subdomain model is best suited to compute the cogging torque and torque ripple with a much higher accuracy than the SC model.





Sign in / Sign up

Export Citation Format

Share Document