Cellulose ◽  
2021 ◽  
Author(s):  
María González Martínez ◽  
Nathalie Marlin ◽  
Denilson Da Silva Perez ◽  
Capucine Dupont ◽  
Carolina del Mar Saavedra Rios ◽  
...  

2020 ◽  
pp. 1-14
Author(s):  
Јovana Milanovic ◽  
Тijana Lazic ◽  
Irena Zivkovic ◽  
Маrija Vuksanovic ◽  
Milena Milosevic ◽  
...  

2013 ◽  
Vol 856 ◽  
pp. 309-313 ◽  
Author(s):  
Anupama Kaushik ◽  
Alka Garg

In this study the castor oil based polyurethane (PU) nanocomposites were prepared by dispersing the cellulose nanocrystallites (CNC) isolated from cotton linters. CNC was dispersed in PU matrix using ultrasonicator coupled with high shear homogenizer. The filler loading was varied from 0-10% of the total weight of the mixture. The PU/CNC nanocomposites were characterized by SEM, XRD, FTIR, mechanical and barrier properties. SEM confirmed homogeneous dispersion of CNCs in polyurethane matrix with small agglomerates at certain places. Improvement in mechanical properties was observed as compared to neat PU. Diffusivity and permeability of the nanocomposites was reduced at higher loadings of CNC.


1923 ◽  
Vol 15 (8) ◽  
pp. 819-822
Author(s):  
William F. Henderson

Holzforschung ◽  
2007 ◽  
Vol 61 (5) ◽  
pp. 504-508 ◽  
Author(s):  
Alain Castellan ◽  
Reinaldo Ruggiero ◽  
Elisabete Frollini ◽  
Ludmila A. Ramos ◽  
Christine Chirat

Abstract Steady-state fluorescence emission spectra of various celluloses were measured at an excitation wavelength of 320 nm. Various spectra recorded in the solid state were compared: (1) ECF bleached papers made of hardwood, the anhydroglucose units of which were chemically modified at C1 and C6 or C2 and C3 positions with carboxylic groups; (2) microcrystalline cellulose; (3) cotton linters; and (4) delignified sisal fibers (mercerized or not). Fluorescence emission was quite independent of the carboxylic acid content and average molecular weight (determined by viscosimetry) of the cellulose polymers. Microcrystalline cellulose (Avicel), cotton linters, and mercerized delignified sisal cellulose were acetylated in homogeneous medium (DMAc/LiCl as solvent system) to obtain soluble polymers in dichloromethane for comparison of spectra recorded in the solid and liquid states. Fluorescence of cellulose acetates in solution (CH2Cl2) and in the solid state was compared under similar experimental conditions to non-esterified celluloses in the solid state. The importance of the solid state for fluorescence emission could be demonstrated. Fluorophores are present in minute amounts in the polymer and their favorable energy transfer for excitation in the solid state likely enhances fluorescence emission. Among numerous fluorophores, dityrosine appeared to be a good candidate for fluorescence because it displayed emission in the fluorescence range of cellulose. Dityrosine is an amino acid involved in the lignification of non-woody plants. Mercerized sisal impregnated with tyrosine in the presence of peroxidase and hydrogen peroxide did not show enhanced emission, in contrast to para-hydroxycinnamic acid (coumaric acid), which is also involved in the lignification process at least for non-woody plants. The origin of cellulose fluorescence remains uncertain and appears to have several origins. This study clearly underlines the importance of the solid state for enhancing fluorophore emission.


2005 ◽  
Vol 61 (4) ◽  
pp. 414-419 ◽  
Author(s):  
T. Saito ◽  
I. Shibata ◽  
A. Isogai ◽  
N. Suguri ◽  
N. Sumikawa

1984 ◽  
Vol 74 (1-3) ◽  
pp. 201-206 ◽  
Author(s):  
M.Z. Sefain ◽  
H. El-Saied

2013 ◽  
Vol 830 ◽  
pp. 163-166 ◽  
Author(s):  
Ri Na Wu ◽  
Hu Zhu ◽  
Bei Hai He

Dissolution of absorbent cotton (DP above 4000) using ionic liquids as solvent and regeneration was investigated. The results show that 1-ally-3-methylimidazolium chloride (AMIMCl) was a good solvent to dissolve absorbent cotton and a solution of 3 wt% can be reached in 18 min at 120°C. Besides, as the dissolving temperature increased the time needed for the cotton linters to dissolve decreased. The physic-chemical properties of the regenerated cellulose films were also characterized by XRD, FTIR and TGA analysis.


Sign in / Sign up

Export Citation Format

Share Document