Worst-case Complexity of Exact Algorithms forNP-hard Problems

Author(s):  
Federico Della Croce ◽  
Bruno Escoffier ◽  
Marcin Kamiski ◽  
Vangelis Th. Paschos
2015 ◽  
Vol 10 (4) ◽  
pp. 699-708 ◽  
Author(s):  
M. Dodangeh ◽  
L. N. Vicente ◽  
Z. Zhang

10.29007/jhtz ◽  
2019 ◽  
Author(s):  
Magdalena Ortiz

Reverse engineering queries from given data, as in the case of query-by-example and query definability, is an important problem with many applications that has recently gained attention in the areas where symbolic artificial intelligence meets learning. In the presence of ontologies this problem was recently studied for Horn-ALC and Horn-ALCI. The main contribution of this paper is to take a first look at the case of DL-Lite, to identify cases where the addition of the ontology does not increase the worst-case complexity of the problem. Unfortunately, reverse engineering conjunctive queries is known to be very hard, even for plain databases, since the smallest witness query is known to be exponential in general. In the light of this, we outline some possible research directions for exploiting the ontology in order to obtain smaller witness queries.


Author(s):  
Massimo Benerecetti ◽  
Daniele Dell’Erba ◽  
Fabio Mogavero

Abstract We propose a novel algorithm for the solution of mean-payoff games that merges together two seemingly unrelated concepts introduced in the context of parity games, small progress measures and quasi dominions. We show that the integration of the two notions can be highly beneficial and significantly speeds up convergence to the problem solution. Experiments show that the resulting algorithm performs orders of magnitude better than the asymptotically-best solution algorithm currently known, without sacrificing on the worst-case complexity.


Sign in / Sign up

Export Citation Format

Share Document