The first chapter introduces basic concepts of Reliability and their relationships. Four probability functions—reliability function, cumulative distribution function, probability density function, and hazard rate function—that completely characterize the failure process are defined. Three failure rates—MTBF, MTTF, MTTR—that play important role in reliability engineering design process are explained here. The three patterns of failures, DFR, CFR, and IFR, are discussed with reference to the bathtub curve. Two probability models, Exponential and Weibull, are presented. Series and parallel systems and application areas of reliability are also presented.


2019 ◽  
Vol 56 (4) ◽  
pp. 1033-1043 ◽  
Author(s):  
Félix Belzunce ◽  
Carolina Martínez-Riquelme

AbstractAn upper bound for the hazard rate function of a convolution of not necessarily independent random lifetimes is provided, which generalizes a recent result established for independent random lifetimes. Similar results are considered for the reversed hazard rate function. Applications to parametric and semiparametric models are also given.


Author(s):  
Lucianne Varn ◽  
Stefanka Chukova ◽  
Richard Arnold

Reliability literature on modeling failures of repairable systems mostly deals with systems having monotonically increasing hazard/failure rates. When the hazard rate of a system is non-monotonic, models developed for monotonically increasing failure rates cannot be effectively applied without making assumptions on the types of repair performed following system failures. For instance, for systems having bathtub-shaped hazard rates, it is assumed that during the initial, decreasing hazard rate phase, all repairs are minimal. These assumptions on the type of general repair can be restrictive. In order to relax these assumptions, it has been suggested that general repairs in the initially decreasing phase can be modeled as “aging” the system. This approach however does not preserve the order of effectiveness of the types of general repair as defined in the literature. In this article, we develop a set of models to address these shortcomings. We propose a new stochastic process to model consecutive failures of repairable systems having non-monotonic, specifically bathtub-shaped, hazard rates, where the types of general repair are not restricted and the order of the effectiveness of the types of repair is preserved. The proposed models guarantee that a repaired system is at least as reliable as one that has not failed (or equivalently one that has been minimally repaired). To illustrate the models, we present multiple examples and simulate the failure-repair process and estimate the quantities of interest.


Sign in / Sign up

Export Citation Format

Share Document