hazard rate function
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 31)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Umme Habibah Rahman ◽  
Tanusree Deb Roy

In this paper, a new kind of distribution has suggested with the concept of exponentiate. The reliability analysis including survival function, hazard rate function, reverse hazard rate function and mills ratio has been studied here. Its quantile function and order statistics are also included. Parameters of the distribution are estimated by the method of Maximum Likelihood estimation method along with Fisher information matrix and confidence intervals have also been given. The application has been discussed with the 30 years temperature data of Silchar city, Assam, India. The goodness of fit of the proposed distribution has been compared with Frechet distribution and as a result, for all 12 months, the proposed distribution fits better than the Frechet distribution.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3113
Author(s):  
Muhammed Rasheed Irshad ◽  
Christophe Chesneau ◽  
Soman Latha Nitin ◽  
Damodaran Santhamani Shibu ◽  
Radhakumari Maya

Many studies have underlined the importance of the log-normal distribution in the modeling of phenomena occurring in biology. With this in mind, in this article we offer a new and motivated transformed version of the log-normal distribution, primarily for use with biological data. The hazard rate function, quantile function, and several other significant aspects of the new distribution are investigated. In particular, we show that the hazard rate function has increasing, decreasing, bathtub, and upside-down bathtub shapes. The maximum likelihood and Bayesian techniques are both used to estimate unknown parameters. Based on the proposed distribution, we also present a parametric regression model and a Bayesian regression approach. As an assessment of the longstanding performance, simulation studies based on maximum likelihood and Bayesian techniques of estimation procedures are also conducted. Two real datasets are used to demonstrate the applicability of the new distribution. The efficiency of the third parameter in the new model is tested by utilizing the likelihood ratio test. Furthermore, the parametric bootstrap approach is used to determine the effectiveness of the suggested model for the datasets.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1790
Author(s):  
Mahmoud El-Morshedy ◽  
Morad Alizadeh ◽  
Afrah Al-Bossly ◽  
Mohamed S. Eliwa

In this article, a discrete analogue of an extension to a two-parameter half-logistic model is proposed for modeling count data. The probability mass function of the new model can be expressed as a mixture representation of a geometric model. Some of its statistical properties, including hazard rate function, moments, moment generating function, conditional moments, stress-strength analysis, residual entropy, cumulative residual entropy and order statistics with its moments, are derived. It is found that the new distribution can be utilized to model positive skewed data, and it can be used for analyzing equi- and over-dispersed data. Furthermore, the hazard rate function can be either decreasing, increasing or bathtub. The parameter estimation through the classical point of view has been performed using the method of maximum likelihood. A detailed simulation study is carried out to examine the outcomes of the estimators. Finally, two distinctive real data sets are analyzed to prove the flexibility of the proposed discrete distribution.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1730
Author(s):  
Mohammed M. A. Almazah ◽  
Muqrin A. Almuqrin ◽  
Mohamed. S. Eliwa ◽  
Mahmoud El-Morshedy ◽  
Haitham M. Yousof

In this article, a new flexible probability density function with three parameters is proposed for modeling asymmetric data (positive and negative) with different types of kurtosis (mesokurtic, leptokurtic and platykurtic). Some of its statistical and reliability properties, including hazard rate function, moments, moment generating function, incomplete moments, mean deviations, moment of the residual life, moment of the reversed residual life, and order statistics are derived. Its hazard rate function can be either constant, increasing-constant, decreasing-constant, U shape, upside down shape or upside down-U shape. Seven classical estimation methods are considered to estimate the unknown model parameters. Monte Carlo simulation experiments are performed to compare the performance of the seven different estimation methods. Finally, a distinctive asymmetric real data application is analyzed for illustrating the flexibility of the new model.


2021 ◽  
Author(s):  
Noam Tal-Perry ◽  
Shlomit Yuval-Greenberg

Temporal expectation is the ability to construct predictions regarding the timing of events, based on previously-experienced temporal regularities of different types. For example, cue-based expectations are constructed when a cue validly indicates when a target is expected to occur. However, in the absence of such cues, expectations can be constructed based on contextual temporal information, including the event's hazard-rate function - its moment-by-moment conditional probability that changes over time; and prior experiences, which provide probabilistic information regarding the event's predicted timing (sequential effects). It was previously suggested that cue-based temporal expectation is exerted via synchronization of spatially-specific neural activity at a target's predictable time, within receptive fields corresponding to the target's expected location. Here, we tested if the same theoretical model holds for contextual temporal effects. Participants (n = 40) performed a speeded spatial-cueing detection task, with two-thirds valid spatial cues. The target's hazard-rate function was modulated by varying the foreperiod - the interval between the spatial cue and the target - among trials, and was manipulated between groups by changing the interval distribution. Reaction times were analyzed using both frequentist and Bayesian generalized linear mixed models, accounting for hazard and sequential effects. Results showed that the effects of contextual temporal structures on reaction times were independent of spatial attention. This suggests that the spatiotemporal mechanisms, thought to account for cue-based expectation, cannot explain other sources of temporal expectations. We conclude that expectations based on contextual structures have different characteristics than cue-based temporal expectation, suggesting reliance on distinct neural mechanisms.


Author(s):  
Dinesh Kumar ◽  
Pawan Kumar ◽  
Pradip Kumar ◽  
Sanjay Kumar Singh ◽  
Umesh Singh

In the present piece of work, we are going to propose a new trigonometry based transformation called PCM transformation. We have been obtained its various statistical properties such as survival function, hazard rate function, reverse-hazard rate function, moment generating function, median, stochastic ordering etc. Maximum Likelihood Estimator (MLE) method under classical approach and Bayesian approaches are tackled to obtain the estimate of unknown parameter. A real dataset has been applied to check its fitness on the basis of fitting criterions Akaike Information criterion (AIC), Bayesian Information criterion (BIC), log-likelihood (-LL) and Kolmogrov-Smirnov (KS) test statistic values in real sense. A simulation study is also being conducted to assess the estimator’s long-term attitude and compared over some chosen distributions.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Saad J. Almalki ◽  
Tahani A. Abushal ◽  
M. D. Alsulami ◽  
G. A. Abd-Elmougod

Models with the bathtub-shaped hazard rate function are widely used in lifetime analysis and reliability engineering. In this paper, we adopted the reduced new modified Weibull (RNMW) distribution with a bathtub-shaped hazard rate function. Under consideration that the population units are failing with two independent causes of failure and the failure time is distributed with RNMW distribution, we formulate the model which is known as competing risks model. The model parameters under the type-II censoring scheme are estimated with the maximum likelihood method with the corresponding asymptotic confidence intervals. Also, the Bayes point and credible intervals with the help of MCMC methods are constructed. The real and simulated datasets are analyzed for illustrative purposes. Finally, the estimators are compared with the Monte Carlo simulation study.


Author(s):  
Emmanuel W. Okereke ◽  
Johnson Ohakwe

AbstractIn this paper, we defined and studied a new distribution called the odd exponentiated half-logistic Burr III distribution. Properties such as the linear representation of the probability density function (PDF) of the distribution, quantile function, ordinary and incomplete moments, moment generating function and distribution of the order statistic were derived. The PDF and hazard rate function were found to be capable of having various shapes, making the new distribution highly flexible. In particular, the hazard rate function can be nonincreasing, unimodal and nondecreasing. It can also have the bathtub shape among other non- monotone shapes. The maximum likelihood procedure was used to estimate the parameters of the new model. We gave two numerical examples to illustrate the usefulness and the ability of the distribution to provide better fits to a number of data sets than several distributions in existence.Keywords: Burr III distribution; maximum likelihood procedure; moments; odd exponentiated half-logistic-G family; order statistics. AbstrakPada artikel ini akan didefinisikan dan dipelajari mengenai distribusi baru yang disebut distribusi Burr III setengah logistik tereksponen ganjil. Kami menurunkan beberapa sifat dari distribusi tersebut yaitu representasi linier dari fungsi kepadatan peluang (FKP), fungsi kuantil, momen biasa dan momen tidak lengkap, fungsi pembangkit momen dan distribusi statistik terurut. Fungsi FKP dan fungsi tingkat hazard diperoleh memiliki bermacam-macam bentuk, membuat distribusi baru ini sangat fleksibel. Secara khusus, fungsi tingkat hazard dapat berupa fungsi taknaik, bermodus tunggal, bisa juga tidak turun. Selain itu, fungsi ini juga dapat berbentuk seperti bak mandi di antara bentuk-bentuk tak monoton lainnya. Prosedur kemungkinan maksimum digunakan untuk mengestimasi parameter model yang baru. Kami memberikan dua contoh numerik untuk mengilustrasikan kegunaan dan kemampuan distribusi untuk menghasilkan kesesuaian yang lebih baik pada sejumlah kumpulan data dibandingkan beberapa distribusi yang ada.Kata kunci: distribusi Burr III; prosedur kemungkinan maksimum; momen; keluarga setengah logistik-G teresponen ganjil; statistic terurut.


Sign in / Sign up

Export Citation Format

Share Document