Advanced Encryption Standard and Elliptic Curve Cryptosystems

Author(s):  
Guido Bertoni ◽  
Jorge Guajardo ◽  
Christof Paar

In the last 20-30 years, the world of modern cryptography has been largely dominated by traditional systems such as the Data Encryption Standard and the RSA algorithm. Such systems have provided a secure way for storing and transmitting information and they are nowadays incorporated in many network protocols and secure storage media. More recently, the increasing advance of crypto-analytical techniques and tools and the emergence of new applications, for example wireless communications and mobile computing, have stimulated the research and development of innovative cryptographic algorithms. These newer systems require a more detailed and sophisticated mathematical formalization and operations, which are not normally supported by general-purpose processors. For example, many basic operations required to implement recently proposed cryptographic algorithms, such as the Advanced Encryption Standard or Elliptic Curve Cryptosystems, are based on arithmetic in finite fields (or Galois fields). This chapter is, thus, intended to give an overview of such developments in modern cryptography. In particular, it aims at giving the reader a comprehensive understanding of innovative cryptosystems, their basic structure, alternative existing hardware architectures to implement them, and their performance requirements and characterizations. Emphasis will be made throughout on two important cases: the Advanced Encryption Standard and Elliptic Curve Cryptosystems.


Author(s):  
Guido Bertoni ◽  
Jorge Guajardo ◽  
Christof Paar

In the last 20-30 years, the world of modern cryptography has been largely dominated by traditional systems such as the Data Encryption Standard and the RSA algorithm. Such systems have provided a secure way for storing and transmitting information and they are nowadays incorporated in many network protocols and secure storage media. More recently, the increasing advance of crypto-analytical techniques and tools and the emergence of new applications, for example wireless communications and mobile computing, have stimulated the research and development of innovative cryptographic algorithms. These newer systems require a more detailed and sophisticated mathematical formalization and operations, which are not normally supported by general-purpose processors. For example, many basic operations required to implement recently proposed cryptographic algorithms, such as the Advanced Encryption Standard or Elliptic Curve Cryptosystems, are based on arithmetic in finite fields (or Galois fields). This chapter is, thus, intended to give an overview of such developments in modern cryptography. In particular, it aims at giving the reader a comprehensive understanding of innovative cryptosystems, their basic structure, alternative existing hardware architectures to implement them, and their performance requirements and characterizations. Emphasis will be made throughout on two important cases: the Advanced Encryption Standard and Elliptic Curve Cryptosystems.


2021 ◽  
Vol 21 (3) ◽  
pp. 1-20
Author(s):  
Mohamad Ali Mehrabi ◽  
Naila Mukhtar ◽  
Alireza Jolfaei

Many Internet of Things applications in smart cities use elliptic-curve cryptosystems due to their efficiency compared to other well-known public-key cryptosystems such as RSA. One of the important components of an elliptic-curve-based cryptosystem is the elliptic-curve point multiplication which has been shown to be vulnerable to various types of side-channel attacks. Recently, substantial progress has been made in applying deep learning to side-channel attacks. Conceptually, the idea is to monitor a core while it is running encryption for information leakage of a certain kind, for example, power consumption. The knowledge of the underlying encryption algorithm can be used to train a model to recognise the key used for encryption. The model is then applied to traces gathered from the crypto core in order to recover the encryption key. In this article, we propose an RNS GLV elliptic curve cryptography core which is immune to machine learning and deep learning based side-channel attacks. The experimental analysis confirms the proposed crypto core does not leak any information about the private key and therefore it is suitable for hardware implementations.


Sign in / Sign up

Export Citation Format

Share Document