modern cryptography
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 28)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Valentyna Fastovets

Problem. Modern cryptography is a very important part of cybersecurity and confidentiality of many operations. It covers almost all parts of our lives, from e-commerce to specialized education of students. Goal. The advantage of symmetric key cryptography is that working with this method is very easy for users, as one key is used for encryption, as well as for decryption purposes, and this key must be secret and should be known only to the sender and recipient and no one else. On the other hand, public key cryptography has two keys. Unfortunately, this exposes the inherent security flaws, as the integrity of the encryption depends entirely on the password. It was decided to consider the implementation of a modified symmetric Vernam cipher that avoids these problems, and its modification and experimental studies should further strengthen data protection. Methodology. Higher mathematics, linear algebra are very important subjects. But if we want to encourage students with cryptography, we need to use all aspects of the IT cluster more effectively. Ideal for this is the implementation of algorithms and programs using programming languages. It is very important and useful for students studying Cybersecurity to illustrate where and how it is possible to create software implementations of encryption / decryption methods. Results. The article presents the analysis and implementation of the modified cryptographic Vernam cipher and Caesar cipher using a concept that combines modern programming languages and the principles of cryptography, which students study in subject-oriented specialties. Originality. An original approach to teaching Cybersecurity students by implementing ciphers using applied programming is described. Practical value. Using cryptography as a learning tool will help students develop their programming skills and effectively understand the concept of cybersecurity in real-world examples.


Author(s):  
Li Li ◽  
Run-Hua Shi

As a fundamental cryptographic primitive, bit commitment has lots of important and practical applications in modern cryptography. All previously proposed non-relativistic quantum bit commitment protocols cannot evade the Lo–Chau and Mayers attacks. Furthermore, relativistic quantum bit commitment protocols require rigorous spacetime constraints. In this paper, we present a simple, feasible but practically secure quantum bit commitment protocol without any spacetime constraint. The security of the proposed protocol is based on non-relativistic quantum mechanics, but it can resist all known attacks, including the Lo–Chau and Mayers attacks in practice.


2021 ◽  
pp. 79-98
Author(s):  
Gove Effinger ◽  
Gary L. Mullen
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
John Prakash Arockiasamy ◽  
Lydia Elizabeth Benjamin ◽  
Rhymend Uthariaraj Vaidyanathan

The design of cryptographically secure pseudorandom number generator (CSPRNG) producing unpredictable pseudorandom sequences robustly and credibly has been a nontrivial task. Almost all the chaos-based CSPRNG design approaches invariably depend only on statistical analysis. Such schemes designed to be secure are being proven to be predictable and insecure day by day. This paper proposes a design and instantiation approach to chaos-based CSPRNG using proven generic constructions of modern cryptography. The proposed design approach with proper instantiation of such generic constructions eventually results in providing best of both worlds that is the provable security guarantees of modern cryptography and passing of necessary statistical tests as that of chaos-based schemes. Also, we introduce a new coupled map lattice based on logistic-sine map for the construction of CSPRNG. The proposed pseudorandom number generator is proven using rigorous security analysis as that of modern cryptography and tested using the standard statistical testing suites. It is observed that the generated sequences pass all stringent statistical tests such as NIST, Dieharder, ENT, and TestU01 randomness test suites.


Author(s):  
Mohamad Awwad

The developments of an algebraic logical language of thoughts by G. Boole are considered using historical and theoretical perspectives. The technical implementations of Boolean logic in combinational circuits and in modern cryptography show strong influences of a 19th century logic on the latest technologies of computing.


2021 ◽  
Author(s):  
Seong Oun Hwang ◽  
Intae Kim ◽  
Wai Kong Lee

2021 ◽  
Author(s):  
Bharadwaja V. Srividya ◽  
Smitha Sasi

The application of internet has spiked up in the present-day scenario, as the exchange of information made between two parties happens in public environment. Hence privacy of information plays an important role in our day to day life. There have been incredible developments made in the field of cryptography resulting in modern cryptography at its zenith. Quantum computers are one among them creating fear into security agencies across the world. Solving the complex mathematical calculations is uncomplicated using quantum computers which results in breaking the keys of modern cryptography, which cannot be broken using classical computers. The concept of quantum physics, into the cryptographic world has resulted in the advancement of quantum cryptography. This technique utilizes the idea of key generation by photons, and communicates between peer entities by secured channel. Quantum cryptography adapts quantum mechanical principles like Heisenberg Uncertainty principle and photon polarization principle to provide secure communication between two parties. This article focuses on generation of a secret shared key, later converted into Quantum bits (Qbits) and transmitted to the receiver securely.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-12
Author(s):  
Faisal Abbasi ◽  

In today’s world, cryptography techniques are used and implemented on the elementary method of finding the prime factor of large integer, which is said to be “Inevitable to Track”. But living in an era where nothing is impossible to achieve, so cryptographic techniques are exposed to both technologies’ advancement in computational power of machines and advancement in the fields of mathematics to break the notion that factoring of large integers into their prime is impossible. To cope up with the threat that cryptography will face is handled by fusion of physics into cryptography, leading to the evolution of Quantum Cryptography. It is one of the fast-growing fields in computer technology. In this paper, I am going to brief the concepts of Quantum Cryptography and how this technology has led to the development of the strategy of complete secure key distribution. The paper covers the loophole present in the modern cryptography techniques, the fundamental principle of quantum cryptography, its implementation in the real world along with the limitation faced in this field, and the possible future of quantum cryptography.


Sign in / Sign up

Export Citation Format

Share Document