The Outer Measure

Keyword(s):  

2018 ◽  
Vol 125 (6) ◽  
pp. 553-553
Author(s):  
Jitender Singh
Keyword(s):  


1992 ◽  
Vol 34 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Werner J. Ricker

Let Σ be a σ-algebra of subsets of some set Ω and let μ:Σ→[0,∞] be a σ-additive measure. If Σ(μ) denotes the set of all elements of Σ with finite μ-measure (where sets equal μ-a.e. are identified in the usual way), then a metric d can be defined in Σ(μ) by the formulahere E ΔF = (E\F) ∪ (F\E) denotes the symmetric difference of E and F. The measure μ is called separable whenever the metric space (Σ(μ), d) is separable. It is a classical result that μ is separable if and only if the Banach space L1(μ), is separable [8, p.137]. To exhibit non-separable measures is not a problem; see [8, p. 70], for example. If Σ happens to be the σ-algebra of μ-measurable sets constructed (via outer-measure μ*) by extending μ defined originally on merely a semi-ring of sets Γ ⊆ Σ, then it is also classical that the countability of Γ guarantees the separability of μ and hence, also of L1(μ), [8, p. 69].





1972 ◽  
Vol 24 (5) ◽  
pp. 989-992 ◽  
Author(s):  
Gerald Beer

The visibility function assigns to each point x of a fixed measurable set E in a Euclidean space En the Lebesgue outer measure of S(x), the set {y : rx + (1 — r)y ∊ E for every r in [0, 1]}.The purpose of this paper is to determine sufficient conditions for the continuity of the function on the interor of a starshaped set.



1992 ◽  
Vol 44 (6) ◽  
pp. 1303-1316 ◽  
Author(s):  
Washek F. Pfeffer ◽  
Brian S. Thomson

AbstractUsing ideas of McShane ([4, Example 3]), a detailed development of the Riemann integral in a locally compact Hausdorff space X was presented in [1]. There the Riemann integral is derived from a finitely additive volume v defined on a suitable semiring of subsets of X. Vis-à-vis the Riesz representation theorem ([8, Theorem 2.141), the integral generates a Riesz measure v in X, whose relationship to the volume v was carefully investigated in [1, Section 7].In the present paper, we use the same setting as in [1] but produce the measure directly without introducing the Riemann integral. Specifically, we define an outer measure by means of gages and introduce a very intuitive concept of gage measurability that is different from the usual Carathéodory définition. We prove that if the outer measure is σ-finite, the resulting measure space is identical to that defined by means of the Carathéodory technique, and consequently to that of [1, Section 7]. If the outer measure is not σ-finite, we investigate the gage measurability of Carathéodory measurable sets that are σ-finite. Somewhat surprisingly, it turns out that this depends on the axioms of set theory.



1956 ◽  
Vol 8 ◽  
pp. 516-523 ◽  
Author(s):  
L. LeBlanc ◽  
G. E. Fox

Introduction. This paper concerns the problem of extending a given measure defined on a Boolean ring to a measure on the generated σ-ring. Two general methods are familiar to the literature, that of Lebesgue (outer measure) and a method proposed by Borel using transfinite induction (4, 49-134; 2, 228-238).



1967 ◽  
Vol 10 (4) ◽  
pp. 519-523 ◽  
Author(s):  
W. Eames ◽  
L. E. May
Keyword(s):  

Let μ∗ be an outer measure on (X, S) with σ- algebra S and let μ* be the inner measure induced by μ∗. A set M is a measurable cover of a set A ⊆ X if A ⊆ M, M is measurable, and μ∗ (M-A) = 0. We assume that every subset of X has a measurable cover; this holds, for example, if μ∗ is the outer measure induced by a measure which is σ- finite on X [2, theorem C, p. 50].



1969 ◽  
Vol 12 (4) ◽  
pp. 427-444 ◽  
Author(s):  
M. C. Godfrey ◽  
M. Sion

Let X, Y be locally compact Hausdorff spaces and μ, ν be Radón outer measures on X and Y respectively. The classical product outer measure ϕ on X × Y generated by measurable rectangles, without direct reference to the topology, turns out to have some serious drawbacks. For example, one can only prove that closed sets (and hence Baire sets) are ϕ-measurable. It is unknown, even when X and Y are compact, whether closed sets are ϕ-measurable.



Sign in / Sign up

Export Citation Format

Share Document