scholarly journals Separability of the L1-space of a vector measure

1992 ◽  
Vol 34 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Werner J. Ricker

Let Σ be a σ-algebra of subsets of some set Ω and let μ:Σ→[0,∞] be a σ-additive measure. If Σ(μ) denotes the set of all elements of Σ with finite μ-measure (where sets equal μ-a.e. are identified in the usual way), then a metric d can be defined in Σ(μ) by the formulahere E ΔF = (E\F) ∪ (F\E) denotes the symmetric difference of E and F. The measure μ is called separable whenever the metric space (Σ(μ), d) is separable. It is a classical result that μ is separable if and only if the Banach space L1(μ), is separable [8, p.137]. To exhibit non-separable measures is not a problem; see [8, p. 70], for example. If Σ happens to be the σ-algebra of μ-measurable sets constructed (via outer-measure μ*) by extending μ defined originally on merely a semi-ring of sets Γ ⊆ Σ, then it is also classical that the countability of Γ guarantees the separability of μ and hence, also of L1(μ), [8, p. 69].

2011 ◽  
Vol 54 (4) ◽  
pp. 680-692 ◽  
Author(s):  
A. Jiménez-Vargas ◽  
Moisés Villegas-Vallecillos

AbstractLet (X, d) be a metric space, and let Lip(X) denote the Banach space of all scalar-valued bounded Lipschitz functions ƒ on X endowed with one of the natural normswhere L(ƒ) is the Lipschitz constant of ƒ. It is said that the isometry group of Lip(X) is canonical if every surjective linear isometry of Lip(X) is induced by a surjective isometry of X. In this paper we prove that if X is bounded separable and the isometry group of Lip(X) is canonical, then every 2-local isometry of Lip(X) is a surjective linear isometry. Furthermore, we give a complete description of all 2-local isometries of Lip(X) when X is bounded.


1969 ◽  
Vol 12 (4) ◽  
pp. 509-510
Author(s):  
W. Eames

Let ψ be the outer measure generated by a gauge g and a sequential covering class C of closed sets of a metric space X, and let D be the resulting strong upper density function. That is, for each A ⊆ X and each x ∈ X:the infimum being taken over all countable subcollections {Iα} of C such that and, for all Iα in the subcollection, d(Iα) < ε where d(Iα) is the diameter of d(Iα).


Author(s):  
Dongni Tan ◽  
Xujian Huang

Abstract We say that a map $f$ from a Banach space $X$ to another Banach space $Y$ is a phase-isometry if the equality \[ \{\|f(x)+f(y)\|, \|f(x)-f(y)\|\}=\{\|x+y\|, \|x-y\|\} \] holds for all $x,\,y\in X$ . A Banach space $X$ is said to have the Wigner property if for any Banach space $Y$ and every surjective phase-isometry $f : X\rightarrow Y$ , there exists a phase function $\varepsilon : X \rightarrow \{-1,\,1\}$ such that $\varepsilon \cdot f$ is a linear isometry. We present some basic properties of phase-isometries between two real Banach spaces. These enable us to show that all finite-dimensional polyhedral Banach spaces and CL-spaces possess the Wigner property.


1979 ◽  
Vol 85 (2) ◽  
pp. 317-324 ◽  
Author(s):  
C. M. Edwards

A JB-algebra A is a real Jordan algebra, which is also a Banach space, the norm in which satisfies the conditions thatandfor all elements a and b in A. It follows from (1.1) and (l.2) thatfor all elements a and b in A. When the JB-algebra A possesses an identity element then A is said to be a unital JB-algebra and (1.2) is equivalent to the condition thatfor all elements a and b in A. For the general theory of JB-algebras the reader is referred to (2), (3), (7) and (10).


1966 ◽  
Vol 62 (4) ◽  
pp. 637-642 ◽  
Author(s):  
T. W. Cusick

For a real number λ, ‖λ‖ is the absolute value of the difference between λ and the nearest integer. Let X represent the m-tuple (x1, x2, … xm) and letbe any n linear forms in m variables, where the Θij are real numbers. The following is a classical result of Khintchine (1):For all pairs of positive integers m, n there is a positive constant Г(m, n) with the property that for any forms Lj(X) there exist real numbers α1, α2, …, αn such thatfor all integers x1, x2, …, xm not all zero.


2000 ◽  
Vol 43 (3) ◽  
pp. 511-528 ◽  
Author(s):  
Jörg Eschmeier

AbstractLet T and S be quasisimilar operators on a Banach space X. A well-known result of Herrero shows that each component of the essential spectrum of T meets the essential spectrum of S. Herrero used that, for an n-multicyclic operator, the components of the essential resolvent set with maximal negative index are simply connected. We give new and conceptually simpler proofs for both of Herrero's results based on the observation that on the essential resolvent set of T the section spaces of the sheavesare complete nuclear spaces that are topologically dual to each other. Other concrete applications of this result are given.


2017 ◽  
Vol 165 (3) ◽  
pp. 467-473 ◽  
Author(s):  
NIK WEAVER

AbstractFor any metric space X, the predual of Lip(X) is unique. If X has finite diameter or is complete and convex—in particular, if it is a Banach space—then the predual of Lip0(X) is unique.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Toufik Tiaiba ◽  
Dahmane Achour

Abstract We introduce and investigate the injective hull of the strongly Lipschitz classical p-compact operator ideal defined between a pointed metric space and a Banach space. As an application we extend some characterizations of the injective hull of the strongly Lipschitz classical p-compact from the linear case to the Lipschitz case. Also, we introduce the ideal of Lipschitz unconditionally quasi p-nuclear operators between pointed metric spaces and show that it coincides with the Lipschitz injective hull of the ideal of Lipschitz classical p-compact operators.


1969 ◽  
Vol 21 ◽  
pp. 748-750 ◽  
Author(s):  
B. R. Wenner

Although the Lebesgue dimension function is topologically invariant, the dimension-theoretic properties of a metric space can sometimes be made clearer by the introduction of a new, topologically equivalent metric. A considerable amount of effort has been devoted to the problem of constructing such metrics; one example of the fruits of this research is the following theorem by Nagata (2, Theorem 5).In order that dim R ≦ n for a metrizable space R it is necessary and sufficient to be able to define a metric p(x, y) agreeing with the topology of R such that for every ∊ > 0 and for every point x oƒ R,implyA metric ρ which satisfies the condition of this theorem is called Nagata's metric (this term was introduced, to the best of the author's knowledge, by Nagami (1, Definition 9.3)).


1968 ◽  
Vol 20 ◽  
pp. 1246-1255 ◽  
Author(s):  
Geoffrey Fox

Let μ be a vector measure (countably additive set function with values in a Banach space) on a field. If μ is of bounded variation, it extends to a vector measure on the generated σ-field (2; 5; 8). Arsene and Strătilă (1) have obtained a result, which when specialized somewhat in form and context, reads as follows: “A vector measure on a field, majorized in norm by a positive, finite, subadditive increasing set function defined on the generated σ-field, extends to a vector measure on the generated σ-field”.


Sign in / Sign up

Export Citation Format

Share Document