Unsaturated Soil Mechanics in Engineering Practice

Author(s):  
D. G. Fredlund ◽  
H. Rahardjo ◽  
M. D. Fredlund
2021 ◽  
Vol 337 ◽  
pp. 03007
Author(s):  
Daniel Batista Santos ◽  
Moisés Antônio da Costa Lemos ◽  
André Luís Brasil Cavalcante

The pile foundations’ design is commonly based on the soil’s initial in situ condition during field investigations or the assumption of its saturated condition. However, for some regions in tropical weather, a significant part of the pile shaft remains above the groundwater table (i.e., unsaturated condition) during the structure’s lifespan. Only considering a constant moisture condition in the soil (unsaturated or saturated) can overestimate or underestimate the pile design. The soil shear strength governs the shaft resistance of a pile and depends on the soil matric suction, which is significant in the unsaturated zone. In this study, an analytical model is proposed to estimate piles’ unsaturated shaft resistance and encourage the use of unsaturated soil mechanics in engineering practice. The mathematical equation involves well-known parameters from unsaturated soil mechanics theory and simulates the pile shaft resistance variation with its length and time, considering a unidimensional infiltration downwards (e.g., during a rainfall event).


2019 ◽  
Vol 56 (8) ◽  
pp. 1059-1069 ◽  
Author(s):  
Delwyn G. Fredlund

Routine geotechnical engineering practice has witnessed a significant increase in the usage of unsaturated soil mechanics principles. Laboratory measurement of the soil-water characteristic curve (SWCC) for a soil has been labelled as a primary reason for the improved understanding of unsaturated soil behaviour. Laboratory measurement of the “shrinkage curve” has yielded further insight into the estimation of unsaturated soil property functions (USPFs). The USPFs provide the necessary information for the simultaneous numerical modeling of the saturated and unsaturated portions of the soil profile. This paper presents a state-of-practice summary of the engineering protocols that have emerged amidst the numerous research studies reported over the past couple of decades. It also introduces issues related to hysteresis associated with the SWCC and suggests a pathway forward.


2000 ◽  
Vol 37 (5) ◽  
pp. 963-986 ◽  
Author(s):  
Delwyn G Fredlund

The implementation of unsaturated soil mechanics into geotechnical engineering practice requires that there be a paradigm shift from classical soil mechanics methodology. The primary drawback to implementation has been the excessive costs required to experimentally measure unsaturated soil properties. The use of the soil-water characteristic curve has been shown to be the key to the implementation of unsaturated soil mechanics. Numerous techniques have been proposed and studied for the assessment of the soil-water characteristic curves. These techniques range from direct laboratory measurement to indirect estimation from grain-size curves and knowledge-based database systems. The soil-water characteristic curve can then be used for the estimation of unsaturated soil property functions. Theoretically based techniques have been proposed for the estimation of soil property functions such as (i) coefficient of permeability, (ii) water storage modulus, and (iii) shear strength. Gradually these estimations are producing acceptable procedures for geotechnical engineering practices for unsaturated soils. The moisture flux ground surface boundary condition is likewise becoming a part of the solution of most problems involving unsaturated soils. The implementation process for unsaturated soils will still require years of collaboration between researchers and practicing geotechnical engineers.Key words: unsaturated soil mechanics, soil suction, unsaturated soil property functions, negative pore-water pressure, matric suction, soil-water characteristic curve.


Sign in / Sign up

Export Citation Format

Share Document