Multi-Armed Bandits, Gittins Index, and its Calculation

Author(s):  
Jhelum Chakravorty ◽  
Aditya Mahajan
Keyword(s):  
1995 ◽  
Vol 32 (1) ◽  
pp. 168-182 ◽  
Author(s):  
K. D. Glazebrook ◽  
S. Greatrix

Nash (1980) demonstrated that index policies are optimal for a class of generalised bandit problem. A transform of the index concerned has many of the attributes of the Gittins index. The transformed index is positive-valued, with maximal values yielding optimal actions. It may be characterised as the value of a restart problem and is hence computable via dynamic programming methodologies. The transformed index can also be used in procedures for policy evaluation.


Econometrica ◽  
1994 ◽  
Vol 62 (3) ◽  
pp. 687 ◽  
Author(s):  
Jeffrey S. Banks ◽  
Rangarajan K. Sundaram

2006 ◽  
Vol 38 (3) ◽  
pp. 643-672 ◽  
Author(s):  
K. D. Glazebrook ◽  
D. Ruiz-Hernandez ◽  
C. Kirkbride

In 1988 Whittle introduced an important but intractable class of restless bandit problems which generalise the multiarmed bandit problems of Gittins by allowing state evolution for passive projects. Whittle's account deployed a Lagrangian relaxation of the optimisation problem to develop an index heuristic. Despite a developing body of evidence (both theoretical and empirical) which underscores the strong performance of Whittle's index policy, a continuing challenge to implementation is the need to establish that the competing projects all pass an indexability test. In this paper we employ Gittins' index theory to establish the indexability of (inter alia) general families of restless bandits which arise in problems of machine maintenance and stochastic scheduling problems with switching penalties. We also give formulae for the resulting Whittle indices. Numerical investigations testify to the outstandingly strong performance of the index heuristics concerned.


1988 ◽  
Vol 25 (A) ◽  
pp. 287-298 ◽  
Author(s):  
P. Whittle

We consider a population of n projects which in general continue to evolve whether in operation or not (although by different rules). It is desired to choose the projects in operation at each instant of time so as to maximise the expected rate of reward, under a constraint upon the expected number of projects in operation. The Lagrange multiplier associated with this constraint defines an index which reduces to the Gittins index when projects not being operated are static. If one is constrained to operate m projects exactly then arguments are advanced to support the conjecture that, for m and n large in constant ratio, the policy of operating the m projects of largest current index is nearly optimal. The index is evaluated for some particular projects.


1994 ◽  
Vol 4 (1) ◽  
pp. 194-199 ◽  
Author(s):  
John N. Tsitsiklis

Sign in / Sign up

Export Citation Format

Share Document