Distributions of Anodic and Cathodic Reaction Sites During Environmentally Assisted Cracking

2013 ◽  
pp. 633-646
Author(s):  
B. G. Ateya ◽  
H. W. Pickering
2008 ◽  
Vol 59 (5) ◽  
Author(s):  
Viorel Branzoi ◽  
Alina Pruna ◽  
Florina Branzoi

The inhibition of zinc corrosion in 3.5% NaCl solution by some organic compounds (sodium dodecylsulphate (SDS), sodium dodecylbenzosulphonate (SDBS) and sodium 1,4-bis(2-etylhexyl) sulphosuccinate (AOT)) was investigated. The inhibition efficiencies were determined by polarization measurements of the zinc electrode in the solution. Electrochemical impedance spectroscopy (EIS) was also used for electrochemical studies of zinc electrode in this medium. The results showed that the used surfactants inhibit the cathodic reaction of hydrogen evolution and at low anodic overvoltage the corrosion process is under activation control, while at high anodic overvoltage the process is under diffusion control.


2021 ◽  
pp. 109555
Author(s):  
Z. Que ◽  
L. Volpe ◽  
A. Toivonen ◽  
M.G. Burke ◽  
F. Scenini ◽  
...  

2009 ◽  
Vol 24 (4) ◽  
pp. 1417-1421 ◽  
Author(s):  
Mamiko Kawakita ◽  
Jin Kawakita ◽  
Tetsuo Uchikoshi ◽  
Yoshio Sakka

The influence of the crystalline orientation of the TiO2 photoanode on the photo-electrochemical characteristics was investigated to reveal the primary factors responsible for improving the photoelectric conversion efficiency of a dye-sensitized solar cell. It was observed that the photocurrent depended on the plane orientation, whereas the dependence of the photopotential on the open circuit was almost constant. The rate of the photoanodic reaction was attributed to the dye adsorption, depending on the surface energy of each oriented plane of the TiO2. The cathodic reaction on TiO2 during open circuit is likely to determine the rate of the entire electrochemical reaction.


Sign in / Sign up

Export Citation Format

Share Document