cracking behavior
Recently Published Documents


TOTAL DOCUMENTS

1188
(FIVE YEARS 346)

H-INDEX

46
(FIVE YEARS 8)

2022 ◽  
Vol 905 ◽  
pp. 67-72
Author(s):  
Shang Wang ◽  
Rui Can Hao ◽  
Hua Gang Liu ◽  
Xiao Chen Wang ◽  
Quan Yang

In order to improve the energy efficiency of shot blasting impact descaling, a three-dimensional finite element impact descaling model was established. Based on the finite element model, the cracking behavior of the scale layer on hot rolled strip from different impacts angles was simulated. The results of finite element calculation and theoretical analysis show that: (1)Under the premise of constant velocity, the descaling area increases with the increase of impact angle, but the increasing rate tends to be moderate. (2)The depth of the impact tunnel and the residual compressive stress surface (-200 MPa) increase as the impact angle goes bigger. The ideal range of impact angle for shot blasting descaling should be 60°-75°.


2022 ◽  
Vol 40 (1) ◽  
pp. 013414
Author(s):  
K. Bobzin ◽  
T. Brögelmann ◽  
N. C. Kruppe ◽  
H. J. Maier ◽  
T. Heidenblut ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xunjian Hu ◽  
Lina Luo ◽  
Gang Lei ◽  
Xiaonan Gong ◽  
Panpan Guo ◽  
...  

The existence of flaws in brittle rocks or rock-like materials has an obvious influence on the material mechanical properties and cracking behavior of civil engineering projects. In this work, the two-dimensional particle flow code PFC2D was used to study the deformation and strength properties, failure processes, and acoustic emission (AE) characteristics of mudstone with a single preexisting flaw. First, the procedure to construct a parallel bond model is introduced. The Weibull distribution is used to reflect the mechanical heterogeneity of rocks. Then, the microscopic parameters used in PFC2D are calibrated to the macroproperties of mudstone obtained from laboratory tests under the uniaxial compression. The results indicate that the increases of the flaw inclination lead to the increasing uniaxial compressive strength and elastic modulus. In terms of microcrack evolution, the initiation, propagation, and coalescence of microcracks are closely related to the force chain. Specifically, an “X” shaped tension force chain concentrated area around the preexisting flaw is founded, which is the most prone area for microcracks to initiate. With an increase in flaw inclination, the b value of AE also shows an increasing trend. By incorporating the AE event numbers into a damage variable, this paper derives a constitutive model, which is verified by numerical results on brittle rocks with a single preexisting flaw under uniaxial compression.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7862
Author(s):  
Jian Liu ◽  
Xuesen Zhang ◽  
Gaohang Lv ◽  
Kang Wang ◽  
Bo Han ◽  
...  

The most common structural defect of a tunnel in the operation period is the cracking of concrete lining. The insufficient thickness of tunnel lining is one of the main reasons for its cracking. This study studied the cracking behavior of standard concrete specimens and the failure behavior of tunnel structures caused by insufficient lining thickness using Cohesive Zone Model (CZM). Firstly, zero-thickness cohesive elements were globally inserted between solid elements of the standard concrete specimen model, and the crack development process of different concrete grades was compared. On this basis, a three-dimensional numerical model of the tunnel in the operation period was established. The mechanism and characteristics of crack propagation under different lining thicknesses were discussed. In addition, the statistics of cracks were made to discuss the development rules of lining cracks quantitatively. The results show that the CZM can reasonably simulate the fracture behavior of concrete. With the increase in concrete strength grade, the number of cohesive damaged elements and crack area increases. The insufficient lining thickness changes the lining stress distribution characteristics, reduces the lining structure’s overall safety, and leads to the cracking of the diseased area more easily. When surrounding rock does not contact the insufficient lining thickness, its influence on the structure is more evident than when surrounding rock fills the entire lining thickness. The number of cohesive damaged elements and the size of the crack area increases significantly.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7608
Author(s):  
Asiful H. Seikh ◽  
Muneer Baig ◽  
Ateekh Ur Rehman ◽  
Faraz H. Hashmi ◽  
Jabair A. Mohammed

In the present study, the stress corrosion cracking (SCC) behavior of ECAP Al5083 alloy was investigated in air as well as in 3.5 % NaCl solution using the slow strain rate tensile test (SSRT). The characteristics of grain boundary precipitates (GBPs), specifically the microchemistry of the SCC behavior of Al5083 alloys, both in “as-received” condition and when deformed by the ECAP process, were examined. The correlations between the SCC resistance and GBP microchemistry were examined. A microstructural evaluation was performed using an optical microscope. SCC tests were carried out using a universal tensile testing machine and the fracture surfaces were studied using scanning electron microscopy (SEM). A strain rate of 1×10−6 s−1 was applied for the SSRT. As the passes increased, the SCC susceptibility of the fine-grained ECAP Al5083 alloy also increased. Moreover, higher ultimate tensile strength and greater elongation were observed. This was due to grain refinement, high-density separations, and the expanded extent of high-density dislocations instigated by severe plastic deformation. Due to the high strength and elongation, the failure analysis showed a ductile mode of fracture. Electron backscattering diffraction (EBSD) analysis was performed to determine more clearly the nature of cracking. EBSD analysis showed that the crack propagation occurred in both transgranular and intergranular modes.


Sign in / Sign up

Export Citation Format

Share Document