Brain Tumor Prediction by Binary Classification Using VGG‐16

Author(s):  
Vaibhav Singh ◽  
Sarthak Sharma ◽  
Shubham Goel ◽  
Shivay Lamba ◽  
Neetu Garg
2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

Brain tumor is a severe cancer disease caused by uncontrollable and abnormal partitioning of cells. Timely disease detection and treatment plans lead to the increased life expectancy of patients. Automated detection and classification of brain tumor are a more challenging process which is based on the clinician’s knowledge and experience. For this fact, one of the most practical and important techniques is to use deep learning. Recent progress in the fields of deep learning has helped the clinician’s in medical imaging for medical diagnosis of brain tumor. In this paper, we present a comparison of Deep Convolutional Neural Network models for automatically binary classification query MRI images dataset with the goal of taking precision tools to health professionals based on fined recent versions of DenseNet, Xception, NASNet-A, and VGGNet. The experiments were conducted using an MRI open dataset of 3,762 images. Other performance measures used in the study are the area under precision, recall, and specificity.


2021 ◽  
Author(s):  
ANKIT GHOSH ◽  
ALOK KOLE

<p>The improvement of Artificial Intelligence (AI) and Machine Learning (ML) can help radiologists in tumor diagnostics without invasive measures. Magnetic resonance imaging (MRI) is a very useful method for diagnosis of tumors in human brain. In this paper, brain MRI images have been analyzed to detect the regions containing tumors and classify these regions into three different tumor categories: meningioma, glioma, and pituitary. This paper presents the implementation and comparison of various enhanced ML algorithms for the detection and classification of brain tumors. A brain tumor is the growth of abnormal cells in the human brain. Brain tumors can be cancerous or non-cancerous. Cancerous or malignant brain tumors can be life threatening. Hence, detection and classification of brain tumors at an early stage is extremely important. In this paper, enhanced ML algorithms have been implemented to predict the presence or the absence of brain tumors using binary classification and to predict whether a patient has brain tumor or not and if he does, detect the type of brain tumor using multi-class classification. The dataset that has been used to perform the binary classification task comprises of two types of brain MRI images with tumor and without tumor. Here nine ML algorithms namely, Support Vector Machine (SVM), Logistic Regression, K-Nearest Neighbor (KNN), Naïve Bayes (NB), Decision Tree (DT) classifier, Random Forest classifier, XGBoost classifier, Stochastic Gradient Descent (SGD) classifier and Gradient Boosting classifier have been used to classify the MRI images. A comparative analysis of the ML algorithms has been performed based on a few performance metrics such as accuracy, recall, and precision, F1-score, AUC-ROC curve and AUC-PR curve. Gradient Boosting classifier has outperformed all the other algorithms with an accuracy of 92.4%, recall of 94.4%, precision of 85%, F1-score of 89.5%, AUC-ROC of 97.2% and an AUC-PR of 91.4%. To address the multi-class classification problem, four ML algorithms namely, SVM, KNN, Random Forest classifier and XGBoost classifier have been employed. In this case, the dataset that has been used consists of four types of brain MRI images with glioma tumor, meningioma tumor, and pituitary tumor and with no tumor. The performances of the ML algorithms have been compared based on accuracy, recall, precision and the F1-score. XGBoost classifier has surpassed all the other algorithms in terms of accuracy, precision, recall and F1-score. XGBoost has produced an accuracy of 90%, precision of 90%, and recall of 90% and F1-score of 90%.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Sahar Gull ◽  
Shahzad Akbar ◽  
Habib Ullah Khan

Brain tumor is a fatal disease, caused by the growth of abnormal cells in the brain tissues. Therefore, early and accurate detection of this disease can save patient’s life. This paper proposes a novel framework for the detection of brain tumor using magnetic resonance (MR) images. The framework is based on the fully convolutional neural network (FCNN) and transfer learning techniques. The proposed framework has five stages which are preprocessing, skull stripping, CNN-based tumor segmentation, postprocessing, and transfer learning-based brain tumor binary classification. In preprocessing, the MR images are filtered to eliminate the noise and are improve the contrast. For segmentation of brain tumor images, the proposed CNN architecture is used, and for postprocessing, the global threshold technique is utilized to eliminate small nontumor regions that enhanced segmentation results. In classification, GoogleNet model is employed on three publicly available datasets. The experimental results depict that the proposed method is achieved average accuracies of 96.50%, 97.50%, and 98% for segmentation and 96.49%, 97.31%, and 98.79% for classification of brain tumor on BRATS2018, BRATS2019, and BRATS2020 datasets, respectively. The outcomes demonstrate that the proposed framework is effective and efficient that attained high performance on BRATS2020 dataset than the other two datasets. According to the experimentation results, the proposed framework outperforms other recent studies in the literature. In addition, this research will uphold doctors and clinicians for automatic diagnosis of brain tumor disease.


Diagnostics ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 565 ◽  
Author(s):  
Muhammad Attique Khan ◽  
Imran Ashraf ◽  
Majed Alhaisoni ◽  
Robertas Damaševičius ◽  
Rafal Scherer ◽  
...  

Manual identification of brain tumors is an error-prone and tedious process for radiologists; therefore, it is crucial to adopt an automated system. The binary classification process, such as malignant or benign is relatively trivial; whereas, the multimodal brain tumors classification (T1, T2, T1CE, and Flair) is a challenging task for radiologists. Here, we present an automated multimodal classification method using deep learning for brain tumor type classification. The proposed method consists of five core steps. In the first step, the linear contrast stretching is employed using edge-based histogram equalization and discrete cosine transform (DCT). In the second step, deep learning feature extraction is performed. By utilizing transfer learning, two pre-trained convolutional neural network (CNN) models, namely VGG16 and VGG19, were used for feature extraction. In the third step, a correntropy-based joint learning approach was implemented along with the extreme learning machine (ELM) for the selection of best features. In the fourth step, the partial least square (PLS)-based robust covariant features were fused in one matrix. The combined matrix was fed to ELM for final classification. The proposed method was validated on the BraTS datasets and an accuracy of 97.8%, 96.9%, 92.5% for BraTs2015, BraTs2017, and BraTs2018, respectively, was achieved.


2021 ◽  
Author(s):  
ANKIT GHOSH ◽  
ALOK KOLE

<p>The improvement of Artificial Intelligence (AI) and Machine Learning (ML) can help radiologists in tumor diagnostics without invasive measures. Magnetic resonance imaging (MRI) is a very useful method for diagnosis of tumors in human brain. In this paper, brain MRI images have been analyzed to detect the regions containing tumors and classify these regions into three different tumor categories: meningioma, glioma, and pituitary. This paper presents the implementation and comparison of various enhanced ML algorithms for the detection and classification of brain tumors. A brain tumor is the growth of abnormal cells in the human brain. Brain tumors can be cancerous or non-cancerous. Cancerous or malignant brain tumors can be life threatening. Hence, detection and classification of brain tumors at an early stage is extremely important. In this paper, enhanced ML algorithms have been implemented to predict the presence or the absence of brain tumors using binary classification and to predict whether a patient has brain tumor or not and if he does, detect the type of brain tumor using multi-class classification. The dataset that has been used to perform the binary classification task comprises of two types of brain MRI images with tumor and without tumor. Here nine ML algorithms namely, Support Vector Machine (SVM), Logistic Regression, K-Nearest Neighbor (KNN), Naïve Bayes (NB), Decision Tree (DT) classifier, Random Forest classifier, XGBoost classifier, Stochastic Gradient Descent (SGD) classifier and Gradient Boosting classifier have been used to classify the MRI images. A comparative analysis of the ML algorithms has been performed based on a few performance metrics such as accuracy, recall, and precision, F1-score, AUC-ROC curve and AUC-PR curve. Gradient Boosting classifier has outperformed all the other algorithms with an accuracy of 92.4%, recall of 94.4%, precision of 85%, F1-score of 89.5%, AUC-ROC of 97.2% and an AUC-PR of 91.4%. To address the multi-class classification problem, four ML algorithms namely, SVM, KNN, Random Forest classifier and XGBoost classifier have been employed. In this case, the dataset that has been used consists of four types of brain MRI images with glioma tumor, meningioma tumor, and pituitary tumor and with no tumor. The performances of the ML algorithms have been compared based on accuracy, recall, precision and the F1-score. XGBoost classifier has surpassed all the other algorithms in terms of accuracy, precision, recall and F1-score. XGBoost has produced an accuracy of 90%, precision of 90%, and recall of 90% and F1-score of 90%.</p>


2004 ◽  
Author(s):  
Lyle E. Bourne ◽  
Alice F. Healy ◽  
James A. Kole ◽  
William D. Raymond

Sign in / Sign up

Export Citation Format

Share Document