brain tumors
Recently Published Documents


TOTAL DOCUMENTS

11834
(FIVE YEARS 3224)

H-INDEX

148
(FIVE YEARS 34)

2022 ◽  
Vol 22 (1) ◽  
pp. 1-30
Author(s):  
Rahul Kumar ◽  
Ankur Gupta ◽  
Harkirat Singh Arora ◽  
Balasubramanian Raman

Brain tumors are one of the critical malignant neurological cancers with the highest number of deaths and injuries worldwide. They are categorized into two major classes, high-grade glioma (HGG) and low-grade glioma (LGG), with HGG being more aggressive and malignant, whereas LGG tumors are less aggressive, but if left untreated, they get converted to HGG. Thus, the classification of brain tumors into the corresponding grade is a crucial task, especially for making decisions related to treatment. Motivated by the importance of such critical threats to humans, we propose a novel framework for brain tumor classification using discrete wavelet transform-based fusion of MRI sequences and Radiomics feature extraction. We utilized the Brain Tumor Segmentation 2018 challenge training dataset for the performance evaluation of our approach, and we extract features from three regions of interest derived using a combination of several tumor regions. We used wrapper method-based feature selection techniques for selecting a significant set of features and utilize various machine learning classifiers, Random Forest, Decision Tree, and Extra Randomized Tree for training the model. For proper validation of our approach, we adopt the five-fold cross-validation technique. We achieved state-of-the-art performance considering several performance metrics, 〈 Acc , Sens , Spec , F1-score , MCC , AUC 〉 ≡ 〈 98.60%, 99.05%, 97.33%, 99.05%, 96.42%, 98.19% 〉, where Acc , Sens , Spec , F1-score , MCC , and AUC represents the accuracy, sensitivity, specificity, F1-score, Matthews correlation coefficient, and area-under-the-curve, respectively. We believe our proposed approach will play a crucial role in the planning of clinical treatment and guidelines before surgery.


2022 ◽  
Vol 146 ◽  
pp. 112532
Author(s):  
Mahshid Deldar Abad Paskeh ◽  
Atefeh Mehrabi ◽  
Mohammad Hossein Gholami ◽  
Amirhossein Zabolian ◽  
Ehsan Ranjbar ◽  
...  

2022 ◽  
Vol 76 ◽  
pp. 102077
Author(s):  
Karen W. Yeh ◽  
Di He ◽  
Johnni Hansen ◽  
Catherine L. Carpenter ◽  
Beate Ritz ◽  
...  

2022 ◽  
Vol 96 ◽  
pp. 50-55
Author(s):  
James A. Balogun ◽  
Olufemi B. Bankole ◽  
Oghenekevwe Okere ◽  
Enoch O. Uche ◽  
Folusho M. Balogun ◽  
...  

Author(s):  
Omid Reza Tamtaji ◽  
Maryam Derakhshan ◽  
Fatemeh Zahra Rashidi Noshabad ◽  
Javad Razaviyan ◽  
Razie Hadavi ◽  
...  

A major terrifying ailment afflicting the humans throughout the world is brain tumor, which causes a lot of mortality among pediatric and adult solid tumors. Several major barriers to the treatment and diagnosis of the brain tumors are the specific micro-environmental and cell-intrinsic features of neural tissues. Absence of the nutrients and hypoxia trigger the cells’ mortality in the core of the tumors of humans’ brains: however, type of the cells’ mortality, including apoptosis or necrosis, has been not found obviously. Current studies have emphasized the non-coding RNAs (ncRNAs) since their crucial impacts on carcinogenesis have been discovered. Several investigations suggest the essential contribution of such molecules in the development of brain tumors and the respective roles in apoptosis. Herein, we summarize the apoptosis-related non-coding RNAs in brain tumors.


Author(s):  
Nayan Lamba ◽  
Andrew Groves ◽  
Matthew Torre ◽  
Kee Kiat Yeo ◽  
J. Bryan Iorgulescu

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 410
Author(s):  
Xiaoman Mao ◽  
Shuang Wu ◽  
Pilar Calero-Pérez ◽  
Ana P. Candiota ◽  
Paula Alfonso ◽  
...  

Glioblastoma is the most malignant and frequently occurring type of brain tumors in adults. Its treatment has been greatly hampered by the difficulty to achieve effective therapeutic concentration in the tumor sites due to its location and the blood–brain barrier. Intranasal administration has emerged as an alternative for drug delivery into the brain though mucopenetration, and rapid mucociliary clearance still remains an issue to be solved before its implementation. To address these issues, based on the intriguing properties of proteins secreted by mussels, polyphenol and catechol functionalization has already been used to promote mucopenetration, intranasal delivery and transport across the blood–brain barrier. Thus, herein we report the synthesis and study of complex 1, a Pt(IV) prodrug functionalized with catecholic moieties. This complex considerably augmented solubility in contrast to cisplatin and showed a comparable cytotoxic effect on cisplatin in HeLa, 1Br3G and GL261 cells. Furthermore, preclinical in vivo therapy using the intranasal administration route suggested that it can reach the brain and inhibit the growth of orthotopic GL261 glioblastoma. These results open new opportunities for catechol-bearing anticancer prodrugs in the treatment for brain tumors via intranasal administration.


2022 ◽  
Author(s):  
Weigang Cui ◽  
Yinyan Wang ◽  
Jianxun Ren ◽  
Catherine S. Hubbard ◽  
Xiaoxuan Fu ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Shihong Zhao ◽  
Boya Xu ◽  
Wenbin Ma ◽  
Hao Chen ◽  
Chuanlu Jiang ◽  
...  

With the gradual understanding of tumor development, many tumor therapies have been invented and applied in clinical work, and immunotherapy has been widely concerned as an emerging hot topic in the last decade. It is worth noting that immunotherapy is nowadays applied under too harsh conditions, and many tumors are defined as “cold tumors” that are not sensitive to immunotherapy, and brain tumors are typical of them. However, there is much evidence that suggests a link between DNA damage repair mechanisms and immunotherapy. This may be a breakthrough for the application of immunotherapy in brain tumors. Therefore, in this review, first, we will describe the common pathways of DNA damage repair. Second, we will focus on immunotherapy and analyze the mechanisms of DNA damage repair involved in the immune process. Third, we will review biomarkers that have been or may be used to evaluate immunotherapy for brain tumors, such as TAMs, RPA, and other molecules that may provide a precursor assessment for the rational implementation of immunotherapy for brain tumors. Finally, we will discuss the rational combination of immunotherapy with other therapeutic approaches that have an impact on the DNA damage repair process in order to open new pathways for the application of immunotherapy in brain tumors, to maximize the effect of immunotherapy on DNA damage repair mechanisms, and to provide ideas and guidance for immunotherapy in brain tumors.


Author(s):  
Amir Massarweh ◽  
Roi Tschernichovsky ◽  
Amos Stemmer ◽  
Alexandra Benouaich-Amiel ◽  
Tali Siegal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document