mr images
Recently Published Documents





2022 ◽  
Vol 72 ◽  
pp. 103372
Li Kang ◽  
Guojuan Liu ◽  
Jianjun Huang ◽  
Jianping Li

Danique E Bruil ◽  
Szabolcs David ◽  
Steven H J Nagtegaal ◽  
Sophia F A M de Sonnaville ◽  
Joost J C Verhoeff

Abstract Background Neural stem cells in the subventricular- (SVZ) and subgranular zone (SGZ) are hypothesized to support growth of glioma. Therefore, irradiation of the SVZ and SGZ might reduce tumor growth and might improve overall survival (OS). However, it may also inhibit the repair capacity of brain tissue. The aim of this retrospective cohort study is to assess the impact of SVZ and SGZ radiotherapy doses on OS of patients with high-grade (HGG) or low-grade (LGG) glioma. Methods We included 273 glioma patients who received radiotherapy. We created an SVZ atlas, shared openly with this work, while SGZ labels were taken from the CoBRA atlas. Next, SVZ and SGZ regions were automatically delineated on T1 MR-images. Dose and OS correlations were investigated with Cox regression and Kaplan-Meier analysis. Results Cox regression analyses showed significant hazard ratios for SVZ dose (univariate: 1.029/Gy, p<0.001; multivariate: 1.103/Gy, p = 0.002) and SGZ dose (univariate: 1.023/Gy, p<0.001; multivariate: 1.055/Gy, p<0.001) in HGG patients. Kaplan-Meier analysis showed significant correlations between OS and high/low dose groups for HGG patients (SVZ: respectively 10.7 months (>30.33 Gy) vs 14.0 months (<30.33 Gy) median OS, p = 0.011; SGZ: respectively 10.7 months (>29.11 Gy) vs 15.5 months (<29.11 Gy) median OS, p<0.001). No correlations between dose and OS were found for LGG patients. Conclusion Irradiation doses on neurogenic areas correlate negatively with OS in patients with HGG. Whether sparing of the SVZ and SGZ during radiotherapy improves OS, should be subject of prospective studies.

2022 ◽  
Vol 22 (1) ◽  
Wenzhe Zhao ◽  
Xin Huang ◽  
Geliang Wang ◽  
Jianxin Guo

Abstract Background Various fusion strategies (feature-level fusion, matrix-level fusion, and image-level fusion) were used to fuse PET and MR images, which might lead to different feature values and classification performance. The purpose of this study was to measure the classification capability of features extracted using various PET/MR fusion methods in a dataset of soft-tissue sarcoma (STS). Methods The retrospective dataset included 51 patients with histologically proven STS. All patients had pre-treatment PET and MR images. The image-level fusion was conducted using discrete wavelet transformation (DWT). During the DWT process, the MR weight was set as 0.1, 0.2, 0.3, 0.4, …, 0.9. And the corresponding PET weight was set as 1- (MR weight). The fused PET/MR images was generated using the inverse DWT. The matrix-level fusion was conducted by fusing the feature calculation matrix during the feature extracting process. The feature-level fusion was conducted by concatenating and averaging the features. We measured the predictive performance of features using univariate analysis and multivariable analysis. The univariate analysis included the Mann-Whitney U test and receiver operating characteristic (ROC) analysis. The multivariable analysis was used to develop the signatures by jointing the maximum relevance minimum redundancy method and multivariable logistic regression. The area under the ROC curve (AUC) value was calculated to evaluate the classification performance. Results By using the univariate analysis, the features extracted using image-level fusion method showed the optimal classification performance. For the multivariable analysis, the signatures developed using the image-level fusion-based features showed the best performance. For the T1/PET image-level fusion, the signature developed using the MR weight of 0.1 showed the optimal performance (0.9524(95% confidence interval (CI), 0.8413–0.9999)). For the T2/PET image-level fusion, the signature developed using the MR weight of 0.3 showed the optimal performance (0.9048(95%CI, 0.7356–0.9999)). Conclusions For the fusion of PET/MR images in patients with STS, the signatures developed using the image-level fusion-based features showed the optimal classification performance than the signatures developed using the feature-level fusion and matrix-level fusion-based features, as well as the single modality features. The image-level fusion method was more recommended to fuse PET/MR images in future radiomics studies.

Olivier Rouvière ◽  
Paul Cezar Moldovan ◽  
Anna Vlachomitrou ◽  
Sylvain Gouttard ◽  
Benjamin Riche ◽  

2022 ◽  
Vol 71 ◽  
pp. 103174
Weisheng Li ◽  
Linhong Wang ◽  
Feiyan Li ◽  
Sheng Qin ◽  
Bin Xiao

2022 ◽  
pp. 102345
Shuai Wang ◽  
Yingying Zhu ◽  
Sungwon Lee ◽  
Daniel C. Elton ◽  
Thomas C. Shen ◽  

Sign in / Sign up

Export Citation Format

Share Document