Sterile Manufacturing Facilities

2022 ◽  
pp. 15-16
2021 ◽  
pp. 127891
Author(s):  
Miguel A. Peinado-Guerrero ◽  
Jesus R. Villalobos ◽  
Patrick E. Phelan ◽  
Nicolas A. Campbell

Author(s):  
Chad Wheeley ◽  
Pedro J. Mago

This paper considers combined heat and power (CHP) systems based on topping cycles only, in which electricity is generated by a prime mover and heat is then recovered from the exhaust and utilized to offset all or a portion of the facility’s process and/or space heating requirements.. The objective of this paper is to develop a methodology to perform a topping cycle CHP assessment and feasibility study for industrial manufacturing facilities. In order to determine the best and most viable option for the facility in question, the proposed methodology can be used to size different systems which utilize diverse technologies and fuel sources, perform an economic analysis of each proposed option, and then compare the benefits and setbacks of each type of CHP system considered. The calculations performed in the economic analysis will then provide a broad insight as to which proposed system will show the best payback if installed. Examples are presented in this paper that describe in detail the application of this methodology, from equipment selection and sizing through economic analyses and proposed system comparisons, which is recommended for use in order to determine the most economically feasible CHP system for an industrial manufacturing facility.


2007 ◽  
Vol 23 (6) ◽  
pp. 1383-1393 ◽  
Author(s):  
K. Lakhdar ◽  
J. Savery ◽  
L.G. Papageorgiou ◽  
S.S. Farid

2021 ◽  
Author(s):  
Suresh Muthulingam ◽  
Suvrat Dhanorkar ◽  
Charles J. Corbett

It is well known that manufacturing operations can affect the environment, but hardly any research explores whether the natural environment shapes manufacturing operations. Specifically, we investigate whether water scarcity, which results from environmental conditions, influences manufacturing firms to lower their toxic releases to the environment. We created a data set that spans 2000–2016 and includes details on the toxic emissions of 3,092 manufacturing facilities in Texas. Additionally, our data set includes measures of the water scarcity experienced by these facilities. Our econometric analysis shows that manufacturing facilities reduce their toxic releases into the environment when they have experienced drought conditions in the previous year. We examine facilities that release toxics to water as well as facilities with no toxic releases to water. We find that the reduction in total releases (to all media) is driven mainly by those facilities that release toxic chemicals to water. Further investigation at a more granular level indicates that water scarcity compels manufacturing facilities to lower their toxic releases into media other than water (i.e., land or air). The impact of water scarcity on toxic releases to water is more nuanced. A full-sample analysis fails to link water scarcity to lower toxic releases to water, but a further breakdown shows that manufacturing facilities in counties with a higher incidence of drought do lower their toxic releases to water. We also find that facilities that release toxics to water undertake more technical and input modifications to their manufacturing processes when they face water scarcity. This paper was accepted by David Simchi-Levi, operations management.


Sign in / Sign up

Export Citation Format

Share Document