scholarly journals 3D Structures: Inverse Opal Scaffolds with an Embossed Surface Pattern Prepared from Sticky Golf-Ball-Shaped Microparticle Assemblies (Adv. Mater. Interfaces 12/2015)

2015 ◽  
Vol 2 (12) ◽  
pp. n/a-n/a
Author(s):  
Sang Woo Kim ◽  
Kwan-Woo Lee ◽  
Sang-A Yi ◽  
Kuk Young Cho
2015 ◽  
Vol 2 (12) ◽  
pp. 1500152 ◽  
Author(s):  
Sang Woo Kim ◽  
Kwan-Woo Lee ◽  
Sang-A Yi ◽  
Kuk Young Cho

Author(s):  
Di Han ◽  
Dai-Lin Zhou ◽  
Qing-Yun Guo ◽  
Xiong Lin ◽  
Qin Zhang ◽  
...  
Keyword(s):  

Author(s):  
Teruo Someya ◽  
Jinzo Kobayashi

Recent progress in the electron-mirror microscopy (EMM), e.g., an improvement of its resolving power together with an increase of the magnification makes it useful for investigating the ferroelectric domain physics. English has recently observed the domain texture in the surface layer of BaTiO3. The present authors ) have developed a theory by which one can evaluate small one-dimensional electric fields and/or topographic step heights in the crystal surfaces from their EMM pictures. This theory was applied to a quantitative study of the surface pattern of BaTiO3).


2018 ◽  
Vol 27 (4) ◽  
pp. 1049-1057
Author(s):  
Kwang-Hyeuk Kim ◽  
Jae-Won Choi ◽  
In-Cheol Kang ◽  
Jae-Kil Han

2020 ◽  
Vol 26 (42) ◽  
pp. 7537-7554 ◽  
Author(s):  
Juan Zeng ◽  
Zunnan Huang

Background: The rapidly increasing number of known protein sequences calls for more efficient methods to predict the Three-Dimensional (3D) structures of proteins, thus providing basic knowledge for rational drug design. Understanding the folding mechanism of proteins is valuable for predicting their 3D structures and for designing proteins with new functions and medicinal applications. Levinthal’s paradox is that although the astronomical number of conformations possible even for proteins as small as 100 residues cannot be fully sampled, proteins in nature normally fold into the native state within timescales ranging from microseconds to hours. These conflicting results reveal that there are factors in organisms that can assist in protein folding. Methods: In this paper, we selected a crowded cell-like environment and temperature, and the top three Posttranslational Modifications (PTMs) as examples to show that Levinthal’s paradox does not reflect the folding mechanism of proteins. We then revealed the effects of these factors on protein folding. Results: The results summarized in this review indicate that a crowded cell-like environment, temperature, and the top three PTMs reshape the Free Energy Landscapes (FELs) of proteins, thereby regulating the folding process. The balance between entropy and enthalpy is the key to understanding the effect of the crowded cell-like environment and PTMs on protein folding. In addition, the stability/flexibility of proteins is regulated by temperature. Conclusion: This paper concludes that the cellular environment could directly intervene in protein folding. The long-term interactions of the cellular environment and sequence evolution may enable proteins to fold efficiently. Therefore, to correctly understand the folding mechanism of proteins, the effect of the cellular environment on protein folding should be considered.


Geology ◽  
2020 ◽  
Author(s):  
C.R. Woltz ◽  
S.M. Porter ◽  
H. Agić ◽  
C.M. Dehler ◽  
C.K. Junium ◽  
...  

Much of our understanding of early eukaryote diversity and paleoecology comes from the record of organic-walled microfossils in shale, yet the conditions controlling their preservation are not well understood. It has been suggested that high concentrations of total organic carbon (TOC) inhibit the preservation of organic fossils in shale, and although this idea is supported anecdotally, it has never been tested. Here we compared the presence, preservational quality, and assemblage diversity of organic-walled microfossils to TOC concentrations of 346 shale samples that span the late Paleoproterozoic to middle Neoproterozoic in age. We found that fossil-bearing samples have significantly lower median TOC values (0.32 wt%, n = 189) than those containing no fossils (0.72 wt%, n = 157). Preservational quality, measured by the loss of surface pattern, density of pitting, and deterioration of wall margin, decreases as TOC increases. Species richness negatively correlates with TOC within the ca. 750 Ma Chuar Group (Arizona, USA), but no relationship is observed in other units. These results support the hypothesis that high TOC content either decreases the preservational quality or inhibits the preservation of organic-walled microfossils altogether. However, it is also possible that other causal factors, including sedimentation rate and microbial degradation, account for the correlation between fossil preservation and TOC. We expect that as TOC varies in space and time, so too does the probability of finding well-preserved fossils. A compilation of 13,940 TOC values spanning Earth history suggests significantly higher median TOC levels in Mesoproterozoic versus Neoproterozoic shale, potentially biasing the interpreted pattern of increased eukaryotic diversity in the Tonian.


Author(s):  
Sergey Klimonsky ◽  
Alexander Baranchikov ◽  
V.N. Lad ◽  
Elena Eremina ◽  
Alexey Garshev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document