Inverse Opal Scaffolds with an Embossed Surface Pattern Prepared from Sticky Golf-Ball-Shaped Microparticle Assemblies

2015 ◽  
Vol 2 (12) ◽  
pp. 1500152 ◽  
Author(s):  
Sang Woo Kim ◽  
Kwan-Woo Lee ◽  
Sang-A Yi ◽  
Kuk Young Cho
Author(s):  
Di Han ◽  
Dai-Lin Zhou ◽  
Qing-Yun Guo ◽  
Xiong Lin ◽  
Qin Zhang ◽  
...  
Keyword(s):  

Author(s):  
Teruo Someya ◽  
Jinzo Kobayashi

Recent progress in the electron-mirror microscopy (EMM), e.g., an improvement of its resolving power together with an increase of the magnification makes it useful for investigating the ferroelectric domain physics. English has recently observed the domain texture in the surface layer of BaTiO3. The present authors ) have developed a theory by which one can evaluate small one-dimensional electric fields and/or topographic step heights in the crystal surfaces from their EMM pictures. This theory was applied to a quantitative study of the surface pattern of BaTiO3).


2018 ◽  
Vol 27 (4) ◽  
pp. 1049-1057
Author(s):  
Kwang-Hyeuk Kim ◽  
Jae-Won Choi ◽  
In-Cheol Kang ◽  
Jae-Kil Han

Geology ◽  
2020 ◽  
Author(s):  
C.R. Woltz ◽  
S.M. Porter ◽  
H. Agić ◽  
C.M. Dehler ◽  
C.K. Junium ◽  
...  

Much of our understanding of early eukaryote diversity and paleoecology comes from the record of organic-walled microfossils in shale, yet the conditions controlling their preservation are not well understood. It has been suggested that high concentrations of total organic carbon (TOC) inhibit the preservation of organic fossils in shale, and although this idea is supported anecdotally, it has never been tested. Here we compared the presence, preservational quality, and assemblage diversity of organic-walled microfossils to TOC concentrations of 346 shale samples that span the late Paleoproterozoic to middle Neoproterozoic in age. We found that fossil-bearing samples have significantly lower median TOC values (0.32 wt%, n = 189) than those containing no fossils (0.72 wt%, n = 157). Preservational quality, measured by the loss of surface pattern, density of pitting, and deterioration of wall margin, decreases as TOC increases. Species richness negatively correlates with TOC within the ca. 750 Ma Chuar Group (Arizona, USA), but no relationship is observed in other units. These results support the hypothesis that high TOC content either decreases the preservational quality or inhibits the preservation of organic-walled microfossils altogether. However, it is also possible that other causal factors, including sedimentation rate and microbial degradation, account for the correlation between fossil preservation and TOC. We expect that as TOC varies in space and time, so too does the probability of finding well-preserved fossils. A compilation of 13,940 TOC values spanning Earth history suggests significantly higher median TOC levels in Mesoproterozoic versus Neoproterozoic shale, potentially biasing the interpreted pattern of increased eukaryotic diversity in the Tonian.


Author(s):  
Sergey Klimonsky ◽  
Alexander Baranchikov ◽  
V.N. Lad ◽  
Elena Eremina ◽  
Alexey Garshev ◽  
...  

Author(s):  
Serkan Dereli ◽  
Raşit Köker

AbstractThis study has been inspired by golf ball movements during the game to improve particle swarm optimization. Because, all movements from the first to the last move of the golf ball are the moves made by the player to win the game. Winning this game is also a result of successful implementation of the desired moves. Therefore, the movements of the golf ball are also an optimization, and this has a meaning in the scientific world. In this sense, the movements of the particles in the PSO algorithm have been associated with the movements of the golf ball in the game. Thus, the velocities of the particles have converted to parabolically descending structure as they approach the target. Based on this feature, this meta-heuristic technique is called RDV (random descending velocity) IW PSO. In this way, the result obtained is improved thousands of times with very small movements. For the application of the proposed new technique, the inverse kinematics calculation of the 7-joint robot arm has been performed and the obtained results have been compared with the traditional PSO, some IW techniques, artificial bee colony, firefly algorithm and quantum PSO.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 464
Author(s):  
Jie Yu ◽  
Angel Caravaca ◽  
Chantal Guillard ◽  
Philippe Vernoux ◽  
Liang Zhou ◽  
...  

Indoor toxic volatile organic compounds (VOCs) pollution is a serious threat to people’s health and toluene is a typical representative. In this study, we developed a composite photocatalyst of carbon nitride quantum dots (CNQDs) in situ-doped TiO2 inverse opal TiO2 IO for efficient degradation of toluene. The catalyst was fabricated using a sol-gel method with colloidal photonic crystals as the template. The as-prepared catalyst exhibited excellent photocatalytic performance for degradation of toluene. After 6 h of simulated sunlight irradiation, 93% of toluene can be converted into non-toxic products CO2 and H2O, while only 37% of toluene is degraded over commercial P25 in the same condition. This greatly enhanced photocatalytic activity results from two aspects: (i) the inverse opal structure enhances the light harvesting while providing adequate surface area for effective oxidation reactions; (ii) the incorporation of CNQDs in the framework of TiO2 increases visible light absorption and promotes the separation of photo-generated charges. Collectively, highly efficient photocatalytic degradation of toluene has been achieved. In addition, it can be expanded to efficient degradation of organic pollutants in liquid phase such as phenol and Rhodamine B. This study provides a green, energy saving solution for indoor toxic VOCs removal as well as for the treatment of organic wastewater.


Sign in / Sign up

Export Citation Format

Share Document