scholarly journals The Convergence of Markov Chain Monte Carlo Methods: From the Metropolis Method to Hamiltonian Monte Carlo

2018 ◽  
Vol 531 (3) ◽  
pp. 1700214 ◽  
Author(s):  
Michael Betancourt
2015 ◽  
Vol 2 (3) ◽  
pp. 939-968
Author(s):  
S. Nakano ◽  
K. Suzuki ◽  
K. Kawamura ◽  
F. Parrenin ◽  
T. Higuchi

Abstract. A technique for estimating the age–depth relationship in an ice core and evaluating its uncertainty is presented. The age–depth relationship is mainly determined by the accumulation of snow at the site of the ice core and the thinning process due to the horizontal stretching and vertical compression of ice layers. However, since neither the accumulation process nor the thinning process are fully understood, it is essential to incorporate observational information into a model that describes the accumulation and thinning processes. In the proposed technique, the age as a function of depth is estimated from age markers and δ18O data. The estimation is achieved using the particle Markov chain Monte Carlo (PMCMC) method, in which the sequential Monte Carlo (SMC) method is combined with the Markov chain Monte Carlo method. In this hybrid method, the posterior distributions for the parameters in the models for the accumulation and thinning processes are computed using the Metropolis method, in which the likelihood is obtained with the SMC method. Meanwhile, the posterior distribution for the age as a function of depth is obtained by collecting the samples generated by the SMC method with Metropolis iterations. The use of this PMCMC method enables us to estimate the age–depth relationship without assuming either linearity or Gaussianity. The performance of the proposed technique is demonstrated by applying it to ice core data from Dome Fuji in Antarctica.


Sign in / Sign up

Export Citation Format

Share Document