Particle size as it relates to the minimum film formation temperature of latices

1991 ◽  
Vol 42 (10) ◽  
pp. 2845-2849 ◽  
Author(s):  
D. P. Jensen ◽  
L. W. Morgan
2004 ◽  
Vol 838 ◽  
Author(s):  
Jing Li ◽  
Wenbin Liang ◽  
Steve Chum

ABSTRACTThe coalescence process of poly (ethylene-co-vinyl acetate) (EVA) and poly (ethylene-co-octene) (EO) dispersion particles was monitored in situ using tapping-mode atomic force microscopy (TMAFM) equipped with a miniature hot stage. This work describes the effect of particle size on the film formation temperature based on direct experimental observation, clarifying further the debate about particle size effect on minimum film formation temperature (MFFT). The results suggest that semicrystalline polyolefin particles have similar deformation temperature dependence. Smaller particles tend to deform faster than larger particles, which is attributed to their smaller mass. Furthermore, morphology changes and mechanical property development associated with the film formation process are also discussed. The TMAFM technique is shown to be very useful in gaining insight into the film formation mechanism, which will provide guidance in future practical applications with polyolefin dispersions.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2500
Author(s):  
Sebastian M. Dron ◽  
Maria Paulis

The film formation step of latexes constitutes one of the challenges of these environmentally friendly waterborne polymers, as the high glass transition (TG) polymers needed to produce hard films to be used as coatings will not produce coherent films at low temperature. This issue has been dealt by the use of temporary plasticizers added with the objective to reduce the TG of the polymers during film formation, while being released to the atmosphere afterwards. The main problem of these temporary plasticizers is their volatile organic nature, which is not recommended for the environment. Therefore, different strategies have been proposed to overcome their massive use. One of them is the use of hydroplasticization, as water, abundant in latexes, can effectively act as plasticizer for certain types of polymers. In this work, the effect of three different grafted hydroplasticizers has been checked in a (meth)acrylate copolymer, concluding that itaconic acid showed the best performance as seen by its low minimum film-formation temperature, just slightly modified water resistance and better mechanical properties of the films containing itaconic acid. Furthermore, film formation monitoring has been carried out by Differential Scanning Calorimety (DSC), showing that itaconic acid is able to retain more strongly the water molecules during the water losing process, improving its hydroplasticization capacity.


Sign in / Sign up

Export Citation Format

Share Document