CuCl 2 ‐Mediated Oxidative Intramolecular α‐Arylation of Ketones with Phenolic Nucleophiles via Oxy‐Allyl Cation Intermediates

2020 ◽  
Vol 15 (22) ◽  
pp. 3816-3819
Author(s):  
Takuto Mochimatsu ◽  
Yusuke Aota ◽  
Taichi Kano ◽  
Keiji Maruoka
Keyword(s):  
2021 ◽  
Author(s):  
◽  
Barry Roy Dent

<p>The aim of the present study has been the synthesis of 1H-cyclo-Propa[1]phenanthrene (16a) and its derivatives, the sole remaining unknown structural type of the cycloproparenes. Established procedures for cycloproparene synthesis are not readily adaptable to this ring system, and routes based upon new bridge-head-substituted 1a,9b-dihydrocyclopropa[1]phenanthrenes are examined. 1, 1-Dichloro-1a-phenylseleno-1a, 9b-dihydrocyclopropa [1] phenanthrene (73) is prepared by the addition of dichlorocarbene to the corresponding phenanthrenyl selenide (72). syn-Selenoxide elimination of PhSeOH from the derived selenoxide (74) gives 1,1-dichloro-1H-cyclopropa[1]phenanthrene (76) which is intercepted by methanolysis. Labelling studies provide convincing evidence for the intermediacy of the 1H-cycloproparene. The viability of an oxidative decarboxylation route to 1,1-dialkyl-1H-cyclopropa[1]phenanthrenes is investigated for the model compound 7,7-dimethylbicyclo[4.1.0]hept-3-ene-1-carboxylic acid (122). A product of formal cyclopropyl-allyl cation rearrangement, is isolated. 1a-Methylseleno-1a,9b-dihydrocyclopropa[1]phenanthrenes (174) is prepared by the unprecedented addition of methylselenide anion to 1aH-cyclopropa[1]phenanthrene (63) (generated by a new route involving the fluoride ion-promoted elimination of the elements of chlorotrimethylsilane from the isomeric 1-chloro-1a-trimethylsilyl-1a, 9b-dihydrocyclopropa[1]phenanthrenes (170) and (171)). Treatment of the drived dimethylselenonium tetra-fluoroborate (179) with base in the presence of furan gives the endo- and exo-furan cycloadducts (180) and (181) of 1H-cyclopropa[1]phenanthrene (16a). The results presented herein provide the first conclusive evidence for the existence of the 1H-cyclopropa[1]phenanthrene ring system, both as the parent hydrocarbon (16a) and the 1,1-dichloro-derivative(76).</p>


Author(s):  
Richard D. Chambers ◽  
Raymond S. Matthews ◽  
Ann Parrin (née Fletcher)
Keyword(s):  

Synlett ◽  
2017 ◽  
Vol 28 (18) ◽  
pp. 2345-2352 ◽  
Author(s):  
Johan Winne ◽  
Jan Hullaert ◽  
Bram Denoo ◽  
Mien Christiaens ◽  
Brenda Callebaut

For the rapid elaboration of polycarbocyclic scaffolds, prevalent in many important families of terpenoid natural products, allyl cations derived from simple heterocyclic alcohols can be used as versatile reaction partners in both (4+3) and (3+2) cycloaddition pathways. Our recent progress in this area is outlined, pointing towards the untapped potential of heterocycles to act as reagents in novel or known but challenging organic transformations.1 Heterocyclic Reagents2 Cycloadditions and Allyl Cations3 Furfuryl Cations in Cycloadditions4 Heterocycle-Substituted Cations in Cycloadditions5 Mechanistic Considerations6 Conclusions and Outlook


1991 ◽  
Vol 69 (9) ◽  
pp. 1365-1375 ◽  
Author(s):  
Xinyao Du ◽  
Donald R. Arnold ◽  
Russell J. Boyd ◽  
Zheng Shi

Carbon–carbon bond cleavage of the radical cations of 1-butene [Formula: see text] and 4,4-dimethyl-1-pentene [Formula: see text] will generate the allyl and alkyl radical and carbocation fragments. Alternative bonding arrangements between the allyl and methyl moieties in [Formula: see text] and between the allyl and tert-butyl moieties in [Formula: see text] possible metastable intermediates or transition states preceding complete separation of the fragments, have been investigated by ab initio molecular orbital calculations. Structures were fully optimized at the UHF/6-31G* or UHF/STO-3G levels, and some of the calculations on [Formula: see text] were expanded with single point MP2/6-31G*//UHF/6-31G* computations. The C4H8+ radical cation, having a structure similar to that of 1-butene, is more stable than the separated fragments: 183 kj mol−1 lower in energy than the sum of the energies of the allyl cation and the methyl radical, and 385 kJ mol−1 lower than the sum of the energies of an allyl radical and a methyl cation, at the MP2/6-31G* level. The corresponding values at the UHF/STO-3G level are 276 and 415 kj mol−1, respectively. There is less bonding interaction between the allyl and tert-butyl moieties in [Formula: see text] The summation of the energies of the allyl radical and tert-butyl cation is 123 kj mol−1 lower than the summation of the energies of the allyl cation and tert-butyl radical, and 115 kJ mol−1 higher in energy than the bonded radical cation [Formula: see text] at the UHF/STO-3G level. These calculated values are compared with thermochemical data and with experimental results on the cleavage of these, and related, radical cations. Key words: radical cation, cleavage, ab initio calculations, electron transfer, photochemistry.


1994 ◽  
Vol 116 (20) ◽  
pp. 9275-9286 ◽  
Author(s):  
Alberto Gobbi ◽  
Gernot Frenking

1970 ◽  
Vol 11 (9) ◽  
pp. 659-662 ◽  
Author(s):  
T.S. Sorensen ◽  
K. Ranganayakulu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document