F. MELCHIORRI, L. MAIANI (eds.): Tbe Cosmic Background Radiation and Fundamental Physics. Conference Proceedings. Third Rome Meeting on Astrophysics. Italian Physical Society, Bologna, 1985, XII + 291 Seiten.

1990 ◽  
Vol 311 (1) ◽  
pp. 54-54
Author(s):  
Volker Müller
1994 ◽  
Vol 2 (2) ◽  
pp. 155-164
Author(s):  
Martin J. Rees

During the last 25 years, evidence has accumulated that our universe has evolved, over a period of 10–15 billion years, from a hot dense fireball to its present state. Telescopes can detect objects so far away that the universe had only a tenth its present age when the light we now receive set out towards us. The cosmic background radiation, and the abundances of elements such as helium and lithium, permit quantitative inferences about what the universe was like when it had been expanding for only a few seconds. The laws of physics established in the laboratory apparently suffice for interpreting all astronomical phenomena back to that time. In the initial instants of cosmic expansion, however, the particle energies and densities were so extreme that terrestrial experiments offer no firm guidance. We will not understand why the universe contains the observed ‘mix’ of matter and radiation, nor why it is expanding in the observed fashion, without further progress in fundamental physics.


2009 ◽  
Vol 5 (S268) ◽  
pp. 19-26
Author(s):  
Gary Steigman

AbstractDuring its early evolution the Universe provided a laboratory to probe fundamental physics at high energies. Relics from those early epochs, such as the light elements synthesized during primordial nucleosynthesis when the Universe was only a few minutes old, and the cosmic background photons, last scattered when the protons (and alphas) and electrons (re)combined some 400 thousand years later, may be used to probe the standard models of cosmology and of particle physics. The internal consistency of primordial nucleosynthesis is tested by comparing the predicted and observed abundances of the light elements, and the consistency of the standard models is explored by comparing the values of the cosmological parameters inferred from primordial nucleosynthesis with those determined by studying the cosmic background radiation.


2001 ◽  
Vol 204 ◽  
pp. 5-15
Author(s):  
P. J. E. Peebles

I review the assumptions and observations that motivate the concept of the extragalactic cosmic background radiation, and the issues of energy accounts and star formation history as a function of galaxy morphological type that figure in the interpretation of the measurements of the extragalactic infrared background.


1990 ◽  
Author(s):  
Peter R. Meinhold ◽  
Philip M. Lubin ◽  
Alfredo O. Chingcuanco ◽  
Jeff A. Schuster ◽  
Michael Seiffert

Sign in / Sign up

Export Citation Format

Share Document