star formation history
Recently Published Documents


TOTAL DOCUMENTS

931
(FIVE YEARS 178)

H-INDEX

74
(FIVE YEARS 12)

2022 ◽  
Vol 924 (1) ◽  
pp. 32
Author(s):  
Alexa Villaume ◽  
Aaron J. Romanowsky ◽  
Jean Brodie ◽  
Pieter van Dokkum ◽  
Charlie Conroy ◽  
...  

Abstract We use the Keck Cosmic Web Imager integral field unit spectrograph to (1) measure the global stellar population parameters for the ultra-diffuse galaxy (UDG) Dragonfly 44 (DF44) to much higher precision than previously possible for any UDG and (2) for the first time measure spatially resolved stellar population parameters of a UDG. We find that DF44 falls below the mass–metallicity relation established by canonical dwarf galaxies both in and beyond the Local Group. We measure a flat radial age gradient ( m logage = + 0.01 − 0.08 + 0.08 log Gyr kpc−1) and a flat to positive metallicity gradient ( m [ Fe / H ] = + 0.09 − 0.12 + 0.11 dex kpc−1), which are inconsistent with the gradients measured in similarly pressure-supported dwarf galaxies. We also measure a negative [Mg/Fe] gradient ( m [ Mg / Fe ] = − 0.20 − 0.18 + 0.18 ) dex kpc−1 such that the central 1.5 kpc of DF44 has stellar population parameters comparable to metal-poor globular clusters. Overall, DF44 does not have internal properties similar to other dwarf galaxies and is inconsistent with it having been puffed up through a prolonged, bursty star formation history, as suggested by some simulations. Rather, the evidence indicates that DF44 experienced an intense epoch of “inside-out” star formation and then quenched early and catastrophically, such that star formation was cut off more quickly than in canonical dwarf galaxies.


2022 ◽  
Vol 924 (2) ◽  
pp. 73
Author(s):  
Andrea Gebek ◽  
Jorryt Matthee

Abstract The ratio of α-elements to iron in galaxies holds valuable information about the star formation history (SFH) since their enrichment occurs on different timescales. The fossil record of stars in galaxies has mostly been excavated for passive galaxies, since the light of star-forming galaxies is dominated by young stars, which have much weaker atmospheric absorption features. Here we use the largest reference cosmological simulation of the EAGLE project to investigate the origin of variations in stellar α-enhancement among star-forming galaxies at z = 0, and their impact on integrated spectra. The definition of α-enhancement in a composite stellar population is ambiguous. We elucidate two definitions—termed “mean” and “galactic” α-enhancement—in more detail. While a star-forming galaxy has a high “mean” α-enhancement when its stars formed rapidly, a galaxy with a large “galactic” α-enhancement generally had a delayed SFH. We find that absorption-line strengths of Mg and Fe correlate with variations in α-enhancement. These correlations are strongest for the “galactic” α-enhancement. However, we show that these are mostly caused by other effects that are cross-correlated with α-enhancement, such as variations in the light-weighted age. This severely complicates the retrieval of α-enhancements in star-forming galaxies. The ambiguity is not severe for passive galaxies, and we confirm that spectral variations in these galaxies are caused by measurable variations in α-enhancements. We suggest that this more complex coupling between α-enhancement and SFHs can guide the interpretation of new observations of star-forming galaxies.


2022 ◽  
Vol 924 (1) ◽  
pp. L14
Author(s):  
Rachel C. Zhang ◽  
Bing Zhang

Abstract The redshift distribution of fast radio bursts (FRBs) is not well constrained. The association of the Galactic FRB 200428 with the young magnetar SGR 1935+2154 raises the working hypothesis that FRB sources track the star formation history of the universe. The discovery of FRB 20200120E in association with a globular cluster in the nearby galaxy M81, however, casts doubts on such an assumption. We apply the Monte Carlo method developed in a previous work to test different FRB redshift distribution models against the recently released first CHIME FRB catalog in terms of their distributions in specific fluence, external dispersion measure (DME), and inferred isotropic energy. Our results clearly rule out the hypothesis that all FRBs track the star formation history of the universe. The hypothesis that all FRBs track the accumulated stars throughout history describes the data better but still cannot meet both the DME and the energy criteria. The data seem to be better modeled with either a redshift distribution model invoking a significant delay with respect to star formation or a hybrid model invoking both a dominant delayed population and a subdominant star formation population. We discuss the implications of this finding for FRB source models.


2022 ◽  
Vol 924 (2) ◽  
pp. 76
Author(s):  
Hiddo S. B. Algera ◽  
Jacqueline A. Hodge ◽  
Dominik A. Riechers ◽  
Sarah K. Leslie ◽  
Ian Smail ◽  
...  

Abstract Radio free–free emission is considered to be one of the most reliable tracers of star formation in galaxies. However, as it constitutes the faintest part of the radio spectrum—being roughly an order of magnitude less luminous than radio synchrotron emission at the GHz frequencies typically targeted in radio surveys—the usage of free–free emission as a star formation rate tracer has mostly remained limited to the local universe. Here, we perform a multifrequency radio stacking analysis using deep Karl G. Jansky Very Large Array observations at 1.4, 3, 5, 10, and 34 GHz in the COSMOS and GOODS-North fields to probe free–free emission in typical galaxies at the peak of cosmic star formation. We find that z ∼ 0.5–3 star-forming galaxies exhibit radio emission at rest-frame frequencies of ∼65–90 GHz that is ∼1.5–2 times fainter than would be expected from a simple combination of free–free and synchrotron emission, as in the prototypical starburst galaxy M82. We interpret this as a deficit in high-frequency synchrotron emission, while the level of free–free emission is as expected from M82. We additionally provide the first constraints on the cosmic star formation history using free–free emission at 0.5 ≲ z ≲ 3, which are in good agreement with more established tracers at high redshift. In the future, deep multifrequency radio surveys will be crucial in order to accurately determine the shape of the radio spectrum of faint star-forming galaxies, and to further establish radio free–free emission as a tracer of high-redshift star formation.


2022 ◽  
Vol 924 (2) ◽  
pp. 81
Author(s):  
G. Parmentier ◽  
A. Pasquali

Abstract We present a novel approach to the riddle of star cluster multiple populations. Stars form from molecular cores. But not all cores form stars. Following their initial compression, such “failed” cores re-expand, rather than collapsing. We propose that their formation and subsequent dispersal regulate the gas density of cluster-forming clumps and, therefore, their core and star formation rates. Clumps for which failed cores are the dominant core type experience star formation histories with peaks and troughs (i.e., discrete star formation episodes). In contrast, too few failed cores results in smoothly decreasing star formation rates. We identify three main parameters shaping the star formation history of a clump: the star and core formation efficiencies per free-fall time, and the timescale on which failed cores return to the clump gas. The clump mass acts as a scaling factor. We use our model to constrain the density and mass of the Orion Nebula Cluster progenitor clump, and to caution that the star formation histories of starburst clusters may contain close-by peaks concealed by stellar age uncertainties. Our model generates a great variety of star formation histories. Intriguingly, the chromosome maps and O–Na anticorrelations of old globular clusters also present diverse morphologies. This prompts us to discuss our model in the context of globular cluster multiple stellar populations. More massive globular clusters exhibit stronger multiple stellar population patterns, which our model can explain if the formation of the polluting stars requires a given stellar mass threshold.


2021 ◽  
Vol 923 (2) ◽  
pp. 164
Author(s):  
Elham Saremi ◽  
Atefeh Javadi ◽  
Mahdieh Navabi ◽  
Jacco Th. van Loon ◽  
Habib G. Khosroshahi ◽  
...  

Abstract An optical monitoring survey in the nearby dwarf galaxies was carried out with the 2.5 m Isaac Newton Telescope. 55 dwarf galaxies and four isolated globular clusters in the Local Group were observed with the Wide Field Camera. The main aims of this survey are to identify the most evolved asymptotic giant branch stars and red supergiants at the endpoint of their evolution based on their pulsational instability, use their distribution over luminosity to reconstruct the star-formation history (SFH), quantify the dust production and mass loss from modeling the multiwavelength spectral energy distributions, and relate this to luminosity and radius variations. In this second of a series of papers, we present the methodology used to estimate SFH based on long-period variable (LPV) stars and then derive it for Andromeda I (And I) dwarf galaxy as an example of the survey. Using our identified 59 LPV candidates within two half-light radii of And I and Padova stellar evolution models, we estimated the SFH of this galaxy. A major epoch of star formation occurred in And I peaking around 6.6 Gyr ago, reaching 0.0035 ± 0.0016 M ⊙ yr−1 and only slowly declining until 1–2 Gyr ago. The presence of some dusty LPVs in this galaxy corresponds to a slight increase in recent star formation peaking around 800 Myr ago. We evaluate a quenching time around 4 Gyr ago (z < 0.5), which makes And I a late-quenching dSph. A total stellar mass (16 ± 7) × 106 M ⊙ is calculated within two half-light radii of And I for a constant metallicity Z = 0.0007.


2021 ◽  
Vol 923 (2) ◽  
pp. L27
Author(s):  
N. Sulzenauer ◽  
H. Dannerbauer ◽  
A. Díaz-Sánchez ◽  
B. Ziegler ◽  
S. Iglesias-Groth ◽  
...  

Abstract Based on observations with the IRAM 30 m and Yebes 40 m telescopes, we report evidence of the detection of Milky Way–like, low-excitation molecular gas, up to the transition CO(J = 5–4), in a distant, dusty star-forming galaxy at z CO = 1.60454. WISE J122651.0+214958.8 (alias SDSS J1226, the Cosmic Seahorse), is strongly lensed by a foreground galaxy cluster at z = 0.44 with a source magnification of μ = 9.5 ± 0.7. This galaxy was selected by cross-correlating near-to-mid-infrared colors within the full-sky AllWISE survey, originally aiming to discover rare analogs of the archetypical strongly lensed submillimeter galaxy SMM J2135–0102, the Cosmic Eyelash. We derive an apparent (i.e., not corrected for lensing magnification) rest-frame 8–1000 μm infrared luminosity of μ L IR = 1.66 − 0.04 + 0.04 × 10 13 L ⊙ and apparent star formation rate μSFRIR = 2960 ± 70 M ⊙ yr−1. SDSS J1226 is ultrabright at S 350μm ≃ 170 mJy and shows similarly bright low-J CO line intensities as SMM J2135–0102, however, with exceptionally small CO(J = 5–4) intensity. We consider different scenarios to reconcile our observations with typical findings of high-z starbursts, and speculate about the presence of a previously unseen star formation mechanism in cosmic noon submillimeter galaxies. In conclusion, the remarkable low line luminosity ratio r 5,2 = 0.11 ± 0.02 is best explained by an extended, main-sequence star formation mode—representing a missing link between starbursts to low-luminosity systems during the epoch of peak star formation history.


2021 ◽  
Vol 923 (1) ◽  
pp. 77
Author(s):  
Andrew B. Pace ◽  
Matthew G. Walker ◽  
Sergey E. Koposov ◽  
Nelson Caldwell ◽  
Mario Mateo ◽  
...  

Abstract The Fornax dwarf spheroidal galaxy has an anomalous number of globular clusters, five, for its stellar mass. There is a longstanding debate about a potential sixth globular cluster (Fornax 6) that has recently been “rediscovered” in DECam imaging. We present new Magellan/M2FS spectroscopy of the Fornax 6 cluster and Fornax dSph. Combined with literature data we identify ∼15–17 members of the Fornax 6 cluster, showing that this overdensity is indeed a star cluster and associated with the Fornax dSph. The cluster is significantly more metal-rich (mean metallicity of [ Fe / H ] ¯ = −0.71 ± 0.05) than the other five Fornax globular clusters (−2.5 < [Fe/H] < −1.4) and more metal-rich than the bulk of Fornax. We measure a velocity dispersion of 5.6 − 1.6 + 2.0 km s − 1 corresponding to an anomalously high mass-to-light of 15 < M/L < 258 at 90% confidence when calculated assuming equilibrium. Two stars inflate this dispersion and may be either Fornax field stars or as yet unresolved binary stars. Alternatively, the Fornax 6 cluster may be undergoing tidal disruption. Based on its metal-rich nature, the Fornax 6 cluster is likely younger than the other Fornax clusters, with an estimated age of ∼2 Gyr when compared to stellar isochrones. The chemodynamics and star formation history of Fornax shows imprints of major events such as infall into the Milky Way, multiple pericenter passages, star formation bursts, and/or potential mergers or interactions. Any of these events may have triggered the formation of the Fornax 6 cluster.


2021 ◽  
Vol 162 (6) ◽  
pp. 261
Author(s):  
Andrés E. Piatti

Abstract Recently, new Sagittarius (Sgr) dwarf-galaxy globular clusters were discovered, which opens the question of the actual size of the Sgr globular cluster population, and therefore on our understanding of the Sgr galaxy formation and accretion history of the Milky Way. Based on Gaia EDR3 and SDSS IV DR16 (APOGEE-2) data sets, we performed an analysis of the color–magnitude diagrams (CMDs) of the eight new Sgr globular clusters found by Minniti et al. from a sound cleaning of the contamination of Milky Way and Sgr field stars, complemented by available kinematic and metal abundance information. The cleaned CMDs and spatial stellar distibutions reveal the presence of stars with a wide range of cluster membership probabilities. Minni 332 turned out to be a younger (<9 Gyr) and more metal-rich ([M/H] ≳ −1.0 dex) globular cluster than M54, the nuclear Sgr globular cluster; as could also be the case of Minni 342, 348, and 349, although their results are less convincing. Minni 341 could be an open cluster candidate (age < 1 Gyr, [M/H] ∼ −0.3 dex), while the analyses of Minni 335, 343, and 344 did not allow us to confirm their physical reality. We also built the Sgr cluster frequency (CF) using available ages of the Sgr globular clusters and compared it with that obtained from the Sgr star formation history. Both CFs are in excellent agreement. However, the addition of eight new globular clusters with ages and metallicities distributed according to the Sgr age–metallicity relationship turns out in a remarkably different CF.


2021 ◽  
Vol 921 (2) ◽  
pp. 130
Author(s):  
Skarleth M. Motiño Flores ◽  
Tommy Wiklind ◽  
Rafael T. Eufrasio

Abstract Star-forming dwarf galaxies have properties similar to those expected in high-redshift galaxies. Hence, these local galaxies may provide insights into the evolution of the first galaxies and the physical processes at work. We present a sample of 11 potential local analogs to high-z (LAHz) galaxies. The sample consists of blue compact dwarf galaxies, selected to have spectral energy distributions that fit galaxies at 1.5 < z < 4. We use SOFIA-HAWC+ observations combined with optical and near-infrared data to characterize the dust properties, star formation rate (SFR), and star formation histories (SFHs) of the sample of LAHz galaxies. We employ Bayesian analysis to characterize the dust using two-component blackbody models. Using the Lightning package, we fit the spectral energy distribution of the LAHz galaxies over the far-UV−far-infrared wavelength range and derive the SFH in five time steps up to a look-back time of 13.3 Gyr. Of the 11 LAHz candidates, six galaxies have SFH consistent with no star formation activity at look-back times beyond 1 Gyr. The remaining galaxies show residual levels of star formation at ages ≳1 Gyr, making them less suitable as local analogs. The six young galaxies stand out in our sample by having the lowest gas-phase metallicities. They are characterized by warmer dust, having the highest specific SFR and the highest gas mass fractions. The young age of these six galaxies suggests that merging is less important as a driver of the star formation activity. The six LAHz candidates are promising candidates for studies of the gasdynamics role in driving star formation.


Sign in / Sign up

Export Citation Format

Share Document