cosmological parameters
Recently Published Documents


TOTAL DOCUMENTS

884
(FIVE YEARS 308)

H-INDEX

68
(FIVE YEARS 15)

Author(s):  
Bikash Chandra Paul ◽  
A. Chanda ◽  
Sunil Maharaj ◽  
Aroonkumar Beesham

Abstract Cosmological models are obtained in a $f(R)$ modified gravity with a coupled Gauss-Bonnet (GB) terms in the gravitational action. The dynamical role of the GB terms is explored with a coupled dilaton field in two different cases (I) $f(R)= R + \gamma R^2- \lambda \left( \frac{R}{3m_s^2} \right)^{\delta}$ where $\gamma$, $\lambda$ and $\delta$ are arbitrary constants and (II) $f(R)=R$ and estimate the constraints on the model parameters. In the first case we choose GB terms coupled with a free scalar field in the presence of interacting fluid and in the second case GB terms coupled with scalar field in a self interacting potential to compare the observed universe. The evolutionary scenario of the universe is obtained adopting a numerical technique as the field equations are highly non-linear. Defining a new density parameter $\Omega_{H}$, a ratio of the dark energy density to the present energy density of the non-relativistic matter, we look for a late accelerating universe. The state finder parameters $\Omega_{H}$, deceleration parameter ($q$), jerk parameter ($j$) are plotted. It is noted that a non-singular universe with oscillating cosmological parameters for a given strength of interactions is admitted in Model-I. The gravitational coupling constant $\lambda$ is playing an important role. The Lagrangian density of $f(R)$ is found to dominate over the GB terms when oscillating phase of dark energy arises. In Model-II, we do not find oscillation of the cosmological parameters as the universe evolves. In the presence of interaction the energy from radiation sector of matter cannot flow to the other two sectors of fluid. The range of values of the strengths of interaction of the fluids are estimated for a stable universe assuming the primordial gravitational wave speed equal to unity.


Author(s):  
M. P. V. V. Bhaskara Rao ◽  
Y. Aditya ◽  
U. Y. Divya Prasanthi ◽  
D. R. K. Reddy

This paper deals with the construction of locally rotationally symmetric (LRS) Bianchi type-II (B-II) cosmological models obtained by solving Einstein field equations coupled with an attractive massive scalar field (MSF) when the source of gravitation is the mixture of cosmic string cloud and anisotropic dark energy (DE) fluid which are minimally interacting. We have obtained exact cosmological models by using (i) shear scalar is proportional to the scalar expansion of the space–time and (ii) a power-law relation between the average scale factor of the universe and the scalar field. Our models represent string cosmological model and DE model in the presence of MSF. Using our model, we determine cosmological parameters such as energy densities, deceleration parameter, statefinders and equation of state parameter. We, also, present the tension density and energy density of the string. We discuss the physical aspects of these cosmological parameters. It is observed that our models represent accelerated expansion phenomenon of our universe as confirmed by Supernova Ia experiment.


Author(s):  
Abdul Malik Sultan ◽  
Abdul Jawad

We investigate the cosmological and thermodynamic aspects of Weyl tensor corrected [Formula: see text] gravity. For this purpose, we assume some well-known cosmological bouncing scenarios such as symmetric bounce cosmology, oscillatory cosmology, matter bounce cosmology, little rip cosmology, superbounce cosmology and develop some cosmological parameters. For instance, the equation of state parameter [Formula: see text] describes the quintessence phase for symmetric bounce cosmology, vacuum phase for oscillatory, little rip and matter bounce cosmology while it gives both quintessence and vacuum phases for matter bounce cosmology. It is also observed that the squared speed of sound [Formula: see text] gives positive behavior for all models resulting in that the models assumed are stable. We evaluate generalized second law of thermodynamics which remains valid for all cosmological models except symmetric bounce cosmology. Moreover, we also investigate the thermal equilibrium condition [Formula: see text] and found its validity for all models except symmetric bounce cosmological model.


2021 ◽  
Vol 3 (6) ◽  
pp. 66-75
Author(s):  
Ioannis Haranas ◽  
Ioannis Gkigkitzis ◽  
Kristin Cobbett ◽  
Ryan Gauthier

According to Landauer’s principle, the energy of a particle may be used to record or erase N number of information bits within the thermal bath. The maximum number of information N recorded by the particle in the heat bath is found to be inversely proportional to its temperature T. If at least one bit of information is transferred from the particle to the medium, then the particle might exchange information with the medium. Therefore for at least one bit of information, the limiting mass that can carry or transform information assuming a temperature T= 2.73 K is equal to m = 4.718´10-40 kg which is many orders of magnitude smaller that the masse of most of today’s elementary particles. Next, using the corresponding temperature of a graviton relic and assuming at least one bit of information the corresponding graviton mass is calculated and from that, a relation for the number of information N carried by a graviton as a function of the graviton mass mgr is derived. Furthermore, the range of information number contained in a graviton is also calculated for the given range of graviton mass as given by Nieto and Goldhaber, from which we find that the range of the graviton is inversely proportional to the information number N. Finally, treating the gravitons as harmonic oscillators in an enclosure of size R we derive the range of a graviton as a function of the cosmological parameters in the present era.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 502
Author(s):  
Marek Biesiada ◽  
Sreekanth Harikumar

Continuous gravitational waves are analogous to monochromatic light and could therefore be used to detect wave effects such as interference or diffraction. This would be possible with strongly lensed gravitational waves. This article reviews and summarises the theory of gravitational lensing in the context of gravitational waves in two different regimes: geometric optics and wave optics, for two widely used lens models such as the point mass lens and the Singular Isothermal Sphere (SIS). Observable effects due to the wave nature of gravitational waves are discussed. As a consequence of interference, GWs produce beat patterns which might be observable with next generation detectors such as the ground based Einstein Telescope and Cosmic Explorer, or the space-borne LISA and DECIGO. This will provide us with an opportunity to estimate the properties of the lensing system and other cosmological parameters with alternative techniques. Diffractive microlensing could become a valuable method of searching for intermediate mass black holes formed in the centres of globular clusters. We also point to an interesting idea of detecting the Poisson–Arago spot proposed in the literature.


2021 ◽  
Vol 162 (6) ◽  
pp. 298
Author(s):  
Gary J. Hill ◽  
Hanshin Lee ◽  
Phillip J. MacQueen ◽  
Andreas Kelz ◽  
Niv Drory ◽  
...  

Abstract The Hobby–Eberly Telescope (HET) Dark Energy Experiment (HETDEX) is undertaking a blind wide-field low-resolution spectroscopic survey of 540 deg2 of sky to identify and derive redshifts for a million Lyα-emitting galaxies in the redshift range 1.9 < z < 3.5. The ultimate goal is to measure the expansion rate of the universe at this epoch, to sharply constrain cosmological parameters and thus the nature of dark energy. A major multiyear Wide-Field Upgrade (WFU) of the HET was completed in 2016 that substantially increased the field of view to 22′ diameter and the pupil to 10 m, by replacing the optical corrector, tracker, and Prime Focus Instrument Package and by developing a new telescope control system. The new, wide-field HET now feeds the Visible Integral-field Replicable Unit Spectrograph (VIRUS), a new low-resolution integral-field spectrograph (LRS2), and the Habitable Zone Planet Finder, a precision near-infrared radial velocity spectrograph. VIRUS consists of 156 identical spectrographs fed by almost 35,000 fibers in 78 integral-field units arrayed at the focus of the upgraded HET. VIRUS operates in a bandpass of 3500−5500 Å with resolving power R ≃ 800. VIRUS is the first example of large-scale replication applied to instrumentation in optical astronomy to achieve spectroscopic surveys of very large areas of sky. This paper presents technical details of the HET WFU and VIRUS, as flowed down from the HETDEX science requirements, along with experience from commissioning this major telescope upgrade and the innovative instrumentation suite for HETDEX.


2021 ◽  
Vol 2021 (12) ◽  
pp. 044
Author(s):  
G. Parimbelli ◽  
G. Scelfo ◽  
S.K. Giri ◽  
A. Schneider ◽  
M. Archidiacono ◽  
...  

Abstract We investigate and quantify the impact of mixed (cold and warm) dark matter models on large-scale structure observables. In this scenario, dark matter comes in two phases, a cold one (CDM) and a warm one (WDM): the presence of the latter causes a suppression in the matter power spectrum which is allowed by current constraints and may be detected in present-day and upcoming surveys. We run a large set of N-body simulations in order to build an efficient and accurate emulator to predict the aforementioned suppression with percent precision over a wide range of values for the WDM mass, Mwdm, and its fraction with respect to the totality of dark matter, fwdm. The suppression in the matter power spectrum is found to be independent of changes in the cosmological parameters at the 2% level for k≲ 10 h/Mpc and z≤ 3.5. In the same ranges, by applying a baryonification procedure on both ΛCDM and CWDM simulations to account for the effect of feedback, we find a similar level of agreement between the two scenarios. We examine the impact that such suppression has on weak lensing and angular galaxy clustering power spectra. Finally, we discuss the impact of mixed dark matter on the shape of the halo mass function and which analytical prescription yields the best agreement with simulations. We provide the reader with an application to galaxy cluster number counts.


2021 ◽  
Vol 923 (2) ◽  
pp. 265
Author(s):  
W. D. Kenworthy ◽  
D. O. Jones ◽  
M. Dai ◽  
R. Kessler ◽  
D. Scolnic ◽  
...  

Abstract A spectral-energy distribution (SED) model for Type Ia supernovae (SNe Ia) is a critical tool for measuring precise and accurate distances across a large redshift range and constraining cosmological parameters. We present an improved model framework, SALT3, which has several advantages over current models—including the leading SALT2 model (SALT2.4). While SALT3 has a similar philosophy, it differs from SALT2 by having improved estimation of uncertainties, better separation of color and light-curve stretch, and a publicly available training code. We present the application of our training method on a cross-calibrated compilation of 1083 SNe with 1207 spectra. Our compilation is 2.5× larger than the SALT2 training sample and has greatly reduced calibration uncertainties. The resulting trained SALT3.K21 model has an extended wavelength range 2000–11,000 Å (1800 Å redder) and reduced uncertainties compared to SALT2, enabling accurate use of low-z I and iz photometric bands. Including these previously discarded bands, SALT3.K21 reduces the Hubble scatter of the low-z Foundation and CfA3 samples by 15% and 10%, respectively. To check for potential systematic uncertainties, we compare distances of low (0.01 < z < 0.2) and high (0.4 < z < 0.6) redshift SNe in the training compilation, finding an insignificant 3 ± 14 mmag shift between SALT2.4 and SALT3.K21. While the SALT3.K21 model was trained on optical data, our method can be used to build a model for rest-frame NIR samples from the Roman Space Telescope. Our open-source training code, public training data, model, and documentation are available at https://saltshaker.readthedocs.io/en/latest/, and the model is integrated into the sncosmo and SNANA software packages.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Yang Liu

AbstractOn the one hand, Andriot and Roupec (Fortsch Phys, 1800105, 2019) proposed an alternative refined de Sitter conjecture, which gives a natural condition on a combination of the first and second derivatives of the scalar potential (Andriot and Roupec 2019). On the other hand, in our previous article (Liu in Eur Phys J Plus 136:901, 2021) , we have found that Palatini Higgs inflation model is in strong tension with the refined de Sitter swampland conjecture (Liu 2021). Therefore, following our previous research, in this article we examine if Higgs inflation model and its two variations: Palatini Higgs inflation and Higgs-Dilaton model (Rubio in Front Astron Space Sci, 10.3389/fspas.2018.00050, 2019) can satisfy the “further refining de Sitter swampland conjecture” or not. Based on observational data (Ade et al., Phys Rev Lett 121:221301, 2018; Akrami et al., Planck 2018 results. X. Constraints on inflation, arXiv:1807.06211 [astro-ph.CO], 2018; Aghanim et al., Planck 2018 results: VI. Cosmological parameters, arXiv:1807.06209 [astro-ph.CO], 2018), we find that these three inflationary models can always satisfy this new swampland conjecture if only we adjust the relevant parameters a, $$b = 1-a$$ b = 1 - a and q. Therefore, if the “further refining de Sitter swampland conjecture” does indeed hold, then the three inflationary models might all be in “landscape”.


2021 ◽  
Vol 2021 (12) ◽  
pp. 042
Author(s):  
Jing-Zhao Qi ◽  
Shang-Jie Jin ◽  
Xi-Long Fan ◽  
Jing-Fei Zhang ◽  
Xin Zhang

Abstract In the near future, the redshift drift observations in optical and radio bands will provide precise measurements on H(z) covering the redshift ranges of 2<z<5 and 0<z<0.3. In addition, gravitational wave (GW) standard siren observations could make measurements on the dipole anisotropy of luminosity distance, which will also provide the H(z) measurements in the redshift range of 0<z<3. In this work, we propose a multi-messenger and multi-wavelength observational strategy to measure H(z) based on the three next-generation projects, E-ELT, SKA, and DECIGO, and we wish to see whether the future H(z) measurements could provide tight constraints on dark-energy parameters. The dark energy models we consider include ΛCDM, wCDM, CPL, HDE, and IΛCDM models. It is found that E-ELT, SKA1, and DECIGO are highly complementary in constraining dark energy models. Although any one of these three data sets can only give rather weak constraints on each model we consider, the combination of them could significantly break the parameter degeneracies and give much tighter constraints on almost all the cosmological parameters. Moreover, we find that the combination of E-ELT, SKA1, DECIGO, and CMB could further improve the constraints on dark energy parameters, e.g., σ(w 0)=0.024 and σ(w a)=0.17 in the CPL model, which means that these three promising probes will play a key role in helping reveal the nature of dark energy.


Sign in / Sign up

Export Citation Format

Share Document