LPMOs in cellulase mixtures affect fermentation strategies for lactic acid production from lignocellulosic biomass

2016 ◽  
Vol 114 (3) ◽  
pp. 552-559 ◽  
Author(s):  
Gerdt Müller ◽  
Dayanand Chandrahas Kalyani ◽  
Svein Jarle Horn
BioResources ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 1379-1389
Author(s):  
Yingnan Cao ◽  
Juan Wang ◽  
Qunhui Wang ◽  
Jianguo Liu ◽  
Tingxi Liu ◽  
...  

Efficient pretreatment and enzymatic hydrolysis is critical to achieve effective utilization of lignocellulosic biomass. In this study, the cellulase composition for lignocellulosic biomass hydrolysis was strategically optimized to improve the efficiency of vinasse saccharification and thus enhance L-lactic acid production. The results showed that the supplementation of β-glycosidase (BG) increased sugar production, and the glucose concentration exceeded cellobiose concentration after 48 h of hydrolysis. These results suggested that the addition of BG aided the hydrolysis of cellobiose and reduced the inhibitory effects caused by sugar accumulation. After 72 h to 96 h of hydrolysis, the BG supplementation improved cellobiose and glucose production by 25.7% and 27.4%, respectively. The effect of BG supplementation on L-lactic acid production during the fermentation of microwave-alkali pretreated vinasse was also investigated. Here, the L-lactic acid production from simultaneous saccharification and fermentation (SSF) with the addition of BG was 20.8% higher than that without BG addition, and was also 37.0% higher than production from separate hydrolysis and fermentation with BG addition. These results indicated the utilization efficiency of lignocellulosic biomass for L-lactic acid production could be enhanced by supplementation of BG in SSF.


2021 ◽  
Author(s):  
Kedong Ma ◽  
Yubo Cui ◽  
Ke Zhao ◽  
Yuxuang Yang ◽  
Yidan Wang ◽  
...  

Abstract Background: D-lactic acid played an important role in the establishment of PLA as a substitute for petrochemical plastics. But, so far, the D-lactic acid production was limited in only pilot scale, which was definitely unable to meet the fast growing market demand. To achieve industrial scale D-lactic acid production, the cost-associated problems such as high-cost feedstock, expensive nutrient sources and fermentation technology need to be resolved to establish an economical fermentation process.Results: In the present study, the combined effect of B vitamin supplementation and membrane integrated continuous fermentation on D-lactic acid production from agricultural lignocellulosic biomass by Lactobacillus delbrueckii was investigated. The results indicated the specific addition of vitamins B1, B2, B3 and B5 could reduce the yeast extract (YE) addition from 10 g/l to 3 g/l without obvious influence on fermentation efficiency. By employing cell recycling system in 350 h continuous fermentation with B vitamin supplementation, YE addition was further reduced to 0.5 g/l, which resulted in nutrient source cost reduction of 86%. A maximum D-lactate productivity of 18.56 g/l/h and optical purity of 99.5% were achieved and higher than most recent reports. Conclusion: These findings suggested the novel fermentation strategy proposed could effectively reduce the production cost and improve fermentation efficiency, thus exhibiting great potential in promoting industrial scale D-lactic acid production from lignocellulosic biomass.


2021 ◽  
Vol 9 (3) ◽  
pp. 1341-1351
Author(s):  
Yalin Li ◽  
Sarang S. Bhagwat ◽  
Yoel R. Cortés-Peña ◽  
Dongwon Ki ◽  
Christopher V. Rao ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lihua Zou ◽  
Shuiping Ouyang ◽  
Yueli Hu ◽  
Zhaojuan Zheng ◽  
Jia Ouyang

Abstract Background Lignocellulosic biomass is an attractive and sustainable alternative to petroleum-based feedstock for the production of a range of biochemicals, and pretreatment is generally regarded as indispensable for its biorefinery. However, various inhibitors that severely hinder the growth and fermentation of microorganisms are inevitably produced during the pretreatment of lignocellulose. Presently, there are few reports on a single microorganism that can detoxify or tolerate toxic mixtures of pretreated lignocellulose hydrolysate while effectively transforming sugar components into valuable compounds. Alternatively, microbial coculture provides a simpler and more efficacious way to realize this goal by distributing metabolic functions among different specialized strains. Results In this study, a novel synthetic microbial consortium, which is composed of a responsible for detoxification bacterium engineered Pseudomonas putida KT2440 and a lactic acid production specialist Bacillus coagulans NL01, was developed to directly produce lactic acid from highly toxic lignocellulosic hydrolysate. The engineered P. putida with deletion of the sugar metabolism pathway was unable to consume the major fermentable sugars of lignocellulosic hydrolysate but exhibited great tolerance to 10 g/L sodium acetate, 5 g/L levulinic acid, 10 mM furfural and HMF as well as 2 g/L monophenol compound. In addition, the engineered strain rapidly removed diverse inhibitors of real hydrolysate. The degradation rate of organic acids (acetate, levulinic acid) and the conversion rate of furan aldehyde were both 100%, and the removal rate of most monoaromatic compounds remained at approximately 90%. With detoxification using engineered P. putida for 24 h, the 30% (v/v) hydrolysate was fermented to 35.8 g/L lactic acid by B. coagulans with a lactic acid yield of 0.8 g/g total sugars. Compared with that of the single culture of B. coagulans without lactic acid production, the fermentation performance of microbial coculture was significantly improved. Conclusions The microbial coculture system constructed in this study demonstrated the strong potential of the process for the biosynthesis of valuable products from lignocellulosic hydrolysates containing high concentrations of complex inhibitors by specifically recruiting consortia of robust microorganisms with desirable characteristics and also provided a feasible and attractive method for the bioconversion of lignocellulosic biomass to other value-added biochemicals.


2021 ◽  
Author(s):  
Lihua Zou ◽  
Shuiping Ouyang ◽  
Yueli Hu ◽  
Zhaojuan Zheng ◽  
Jia Ouyang

Abstract Background Lignocellulosic biomass is an attractive and sustainable alternative to petroleum-based feedstock for the production a range of biochemicals, and a pretreatment is generally regarded to be indispensable for its bio-refinery. Nevertheless, various inhibitors that severely hindered the growth and fermentation of microorganisms were produced inevitably during the pretreatment of lignocellulose. Presently, a single microorganism that can tolerate toxic mixtures of pretreatment hydrolysate while effectively transforming sugar components into valuable compound is less well reported. Alternatively, microbial co-culture provides a simpler and more efficacious way to realize this goal via distributing metabolic tasks among proper strains. Results In this study, a novel synthetic microbial consortia, which is composed of a responsible for detoxification bacterium engineered Pseudomonas putida KT2440 and a lactic acid production specialist Bacillus coagulans NL01, was developed to directly produce lactic acid from high-toxic lignocellulosic hydrolysate. The engineered P. putida with deletion of sugar metabolism pathway was suggested to be unable to consume the major fermentable sugars of lignocellulosic hydrolysate, but can rapidly remove inhibitors in hydrolysate. With detoxification using engineered P. putida for 24 h, the pretreated hydrolysate was fermented into 35.8 g/L of lactic acid by B. coagulans with a yield of 90%. The fermentation performance of microbial co-culture was significantly improved than that single culture of B. coagulans without lactic acid production. Conclusions The microbial coculture system constructed by this study demonstrated strong potential of the process for biosynthesis of valuable product from lignocellulosic hydrolysate containing high concentration of complex inhibitors by specifically recruited consortia of robust microorganisms with desirable characteristics and also provided a feasible and attractive method for bioconversion of lignocellulosic biomass to other value-added biochemicals.


RSC Advances ◽  
2014 ◽  
Vol 4 (42) ◽  
pp. 22013-22021 ◽  
Author(s):  
Ying Wang ◽  
Mohamed Ali Abdel-Rahman ◽  
Yukihiro Tashiro ◽  
Yaotian Xiao ◽  
Takeshi Zendo ◽  
...  

We established an effective highl-lactic acid production system based on fed-batch bacterial cultures utilising lignocellulosic biomass-derived mixed sugars without carbon catabolite repression.


2016 ◽  
Vol 32 (2) ◽  
pp. 271-278 ◽  
Author(s):  
Yixing Zhang ◽  
Amit Kumar ◽  
Philip R. Hardwidge ◽  
Tsutomu Tanaka ◽  
Akihiko Kondo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document