Lignocellulosic Biomass
Recently Published Documents


TOTAL DOCUMENTS

3462
(FIVE YEARS 2074)

H-INDEX

130
(FIVE YEARS 55)

2022 ◽  
Vol 177 ◽  
pp. 114533
Author(s):  
Rodrigo Iñaki Urrutia ◽  
Victoria Soledad Gutierrez ◽  
Natalia Stefanazzi ◽  
Maria Alicia Volpe ◽  
Jorge Omar Werdin González

2022 ◽  
Vol 157 ◽  
pp. 112056
Author(s):  
Fanzhi Qin ◽  
Chen Zhang ◽  
Guangming Zeng ◽  
Danlian Huang ◽  
Xiaofei Tan ◽  
...  

Bioengineered ◽  
2022 ◽  
Vol 13 (2) ◽  
pp. 2139-2172
Author(s):  
Reetu Saini ◽  
Anil Kumar Patel ◽  
Jitendra Kumar Saini ◽  
Chiu-Wen Chen ◽  
Sunita Varjani ◽  
...  

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 86
Author(s):  
Vadim Ippolitov ◽  
Ikenna Anugwom ◽  
Robin van Deun ◽  
Mika Mänttäri ◽  
Mari Kallioinen-Mänttäri

Ultrafiltration was employed in the purification of spent Deep Eutectic Solvent (DES, a mixture of choline chloride and lactic acid, 1:10, respectively) used in the extraction of lignin from lignocellulosic biomass. The aim of this was to recover different lignin fractions and to purify spent solvent. The results revealed that the commercial regenerated cellulose membranes—RC70PP and Ultracel 5 kDa UF membranes—could be used in the treatment of the spent DES. The addition of cosolvent (ethanol) to the spent DES decreased solvent’s viscosity, which enabled filtration. With two-pass ultrafiltration process with 10 kDa and 5 kDa membranes about 95% of the dissolved polymeric compounds (lignin and hemicelluloses) were removed from the spent DES. The utilized membranes also showed the capability to fractionate polymeric compounds into two fractions—above and under 10,000 Da. Moreover, the 10 kDa cellulose-based membrane showed good stability during a continuous period of three weeks exposure to the solution of DES and ethanol. Its pure water permeability decreased only by 3%. The results presented here demonstrate the possibility to utilize cellulose membranes in the treatment of spent DES to purify the solvent and recover the interesting compounds.


2022 ◽  
Vol 9 ◽  
Author(s):  
Yumei Jian ◽  
Ye Meng ◽  
Hu Li

Increasing fossil fuels consumption and global warming have driven the global revolution towards renewable energy sources. Lignocellulosic biomass is the main source of renewable carbon-based fuels. The abundant intermolecular linkages and high oxygen content between cellulose, hemicellulose, and lignin limit the use of traditional fuels. Therefore, it is a promising strategy to break the above linkages and remove oxygen by selective catalytic cracking of C–O bond to further transform the main components of biomass into small molecular products. This mini-review discusses the significance of selectivity control in C–O bond cleavage with well-tailored catalytic systems or strategies for furnishing biofuels and value-added chemicals of high efficiency from lignocellulosic biomass. The current challenges and future opportunities of converting lignocellulose biomass into high-value chemicals are also summarized and analyzed.


2022 ◽  
Vol 3 (1) ◽  
pp. 35-55
Author(s):  
Nalok Dutta ◽  
Muhammad Usman ◽  
Gang Luo ◽  
Shicheng Zhang

Biomass valorization plays a significant role in the production of biofuels and various value-added biochemicals, in addition to lowering greenhouse gas emissions. In terms of biorefining methods, hydrothermal (HT) and biological techniques have demonstrated the capability of valorizing biomass raw materials to yield value added end-products. An inter-disciplinary bio-economical approach is capable of optimizing biomass’s total potential in terms of environmental perspective and circular bioeconomy standpoint. The aim of this review is to provide an in-depth overview of combinatorial HT and biological techniques to maximize biomass value, which includes biological valorization following HT pretreatment and HT valorization of lignocellulosic substrates emanating from biocatalytic hydrolysis/anaerobic digestion and/or pretreated food waste for the ultimate yield of biogas/biochar and biocrude. In this study, we discuss recent advances regarding HT and biological treatment conditions, synergies between the two technologies, and optimal performance. Additionally, energy balances and economic feasibility assessments of alternative integrated solutions reported in previous studies are compared. Furthermore, we conclude by discussing the challenges and opportunities involved in integrating HT and biologicals methods toward complete biomass utilization.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 495
Author(s):  
Nives Jovičić ◽  
Alan Antonović ◽  
Ana Matin ◽  
Suzana Antolović ◽  
Sanja Kalambura ◽  
...  

Globally, lignocellulosic biomass has great potential for industrial production of materials and products, but this resource must be used in an environmentally friendly, socially acceptable and sustainable manner. Wood and agricultural residues such as walnut shells as lignocellulosic biomass are one of the most affordable and important renewable resources in the world, which can partially replace fossil resources. The overall objective of the research is to provide background information that supports new applications of walnut shells in a biorefinery context and to increase the economic value of these non-wood forest products. This paper presents the properties characterization of liquefied biomass according to their chemical composition. All results were compared to liquefied wood. In this study, the liquefaction properties of five different walnut shell particle sizes were determined using glycerol as the liquefaction reagent under defined reaction conditions. The liquefied biomass was characterized for properties such as percentage residue, degree of liquefaction, and hydroxyl OH numbers. The chemical composition of the same biomass was investigated for its influence on the liquefaction properties. Accordingly, the main objective of this study was to determine the liquefaction properties of different particle sizes as a function of their chemical composition, also in comparison with the chemical composition of wood. The study revealed that walnut shell biomass can be effectively liquefied into glycerol using H2SO4 as the catalyst, with liquefaction efficiency ranging from 89.21 to 90.98%.


Sign in / Sign up

Export Citation Format

Share Document