Directed Evolution of an Error-Prone T7 DNA Polymerase that Attenuates Viral Replication

ChemBioChem ◽  
2011 ◽  
Vol 12 (10) ◽  
pp. 1551-1558 ◽  
Author(s):  
Sandra Söte ◽  
Stefan Kleine ◽  
Marina Schlicke ◽  
Susanne Brakmann
2015 ◽  
Vol 89 (16) ◽  
pp. 8119-8129 ◽  
Author(s):  
Eytan Herzig ◽  
Nickolay Voronin ◽  
Nataly Kucherenko ◽  
Amnon Hizi

ABSTRACTThe process of reverse transcription (RTN) in retroviruses is essential to the viral life cycle. This key process is catalyzed exclusively by the viral reverse transcriptase (RT) that copies the viral RNA into DNA by its DNA polymerase activity, while concomitantly removing the original RNA template by its RNase H activity. During RTN, the combination between DNA synthesis and RNA hydrolysis leads to strand transfers (or template switches) that are critical for the completion of RTN. The balance between these RT-driven activities was considered to be the sole reason for strand transfers. Nevertheless, we show here that a specific mutation in HIV-1 RT (L92P) that does not affect the DNA polymerase and RNase H activities abolishes strand transfer. There is also a good correlation between this complete loss of the RT's strand transfer to the loss of the DNA clamp activity of the RT, discovered recently by us. This finding indicates a mechanistic linkage between these two functions and that they are both direct and unique functions of the RT (apart from DNA synthesis and RNA degradation). Furthermore, when the RT's L92P mutant was introduced into an infectious HIV-1 clone, it lost viral replication, due to inefficient intracellular strand transfers during RTN, thus supporting thein vitrodata. As far as we know, this is the first report on RT mutants that specifically and directly impair RT-associated strand transfers. Therefore, targeting residue Leu92 may be helpful in selectively blocking this RT activity and consequently HIV-1 infectivity and pathogenesis.IMPORTANCEReverse transcription in retroviruses is essential for the viral life cycle. This multistep process is catalyzed by viral reverse transcriptase, which copies the viral RNA into DNA by its DNA polymerase activity (while concomitantly removing the RNA template by its RNase H activity). The combination and balance between synthesis and hydrolysis lead to strand transfers that are critical for reverse transcription completion. We show here for the first time that a single mutation in HIV-1 reverse transcriptase (L92P) selectively abolishes strand transfers without affecting the enzyme's DNA polymerase and RNase H functions. When this mutation was introduced into an infectious HIV-1 clone, viral replication was lost due to an impaired intracellular strand transfer, thus supporting thein vitrodata. Therefore, finding novel drugs that target HIV-1 reverse transcriptase Leu92 may be beneficial for developing new potent and selective inhibitors of retroviral reverse transcription that will obstruct HIV-1 infectivity.


2020 ◽  
Vol 48 (22) ◽  
pp. e128-e128
Author(s):  
Jia Wei Siau ◽  
Samuel Nonis ◽  
Sharon Chee ◽  
Li Quan Koh ◽  
Fernando J Ferrer ◽  
...  

Abstract Directed evolution methodologies benefit from read-outs quantitatively linking genotype to phenotype. We therefore devised a method that couples protein–peptide interactions to the dynamic read-out provided by an engineered DNA polymerase. Fusion of a processivity clamp protein to a thermostable nucleic acid polymerase enables polymerase activity and DNA amplification in otherwise prohibitive high-salt buffers. Here, we recapitulate this phenotype by indirectly coupling the Sso7d processivity clamp to Taq DNA polymerase via respective fusion to a high affinity and thermostable interacting protein–peptide pair. Escherichia coli cells co-expressing protein–peptide pairs can directly be used in polymerase chain reactions to determine relative interaction strengths by the measurement of amplicon yields. Conditional polymerase activity is further used to link genotype to phenotype of interacting protein–peptide pairs co-expressed in E. coli using the compartmentalized self-replication directed evolution platform. We validate this approach, termed compartmentalized two-hybrid replication, by selecting for high-affinity peptides that bind two model protein partners: SpyCatcher and the large fragment of NanoLuc luciferase. We further demonstrate directed co-evolution by randomizing both protein and peptide components of the SpyCatcher–SpyTag pair and co-selecting for functionally interacting variants.


2004 ◽  
Vol 22 (6) ◽  
pp. 755-759 ◽  
Author(s):  
Farid J Ghadessy ◽  
Nicola Ramsay ◽  
François Boudsocq ◽  
David Loakes ◽  
Anthony Brown ◽  
...  

ChemBioChem ◽  
2011 ◽  
Vol 12 (10) ◽  
pp. 1437-1437
Author(s):  
Samra Obeid ◽  
Andreas Schnur ◽  
Christian Gloeckner ◽  
Nina Blatter ◽  
Wolfram Welte ◽  
...  

2016 ◽  
Vol 132 ◽  
pp. 219-224 ◽  
Author(s):  
Yi-Ping Wang ◽  
Li-Ping Huang ◽  
Wen-Juan Du ◽  
Yan-Wu Wei ◽  
Hong-Li Wu ◽  
...  

2011 ◽  
Vol 286 (28) ◽  
pp. 25246-25255 ◽  
Author(s):  
Karl E. Zahn ◽  
Egor P. Tchesnokov ◽  
Matthias Götte ◽  
Sylvie Doublié

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mengshi Wu ◽  
Hua Wei ◽  
Huang Tan ◽  
Shaojun Pan ◽  
Qi Liu ◽  
...  

AbstractGeminiviruses are causal agents of devastating diseases in crops. Geminiviruses have circular single-stranded (ss) DNA genomes that are replicated in the nucleus of the infected plant cell through double-stranded (ds) DNA intermediates by the plant DNA replication machinery. Which host DNA polymerase mediates geminiviral multiplication, however, has so far remained elusive. Here, we show that subunits of the nuclear replicative DNA polymerases α and δ physically interact with the geminivirus-encoded replication enhancer protein, C3, and that these polymerases are required for viral replication. Our results suggest that, while DNA polymerase α is essential to generate the viral dsDNA intermediate, DNA polymerase δ mediates the synthesis of new copies of the geminiviral ssDNA genome, and that the virus-encoded C3 may act selectively, recruiting DNA polymerase δ over ε to favour productive replication.


mBio ◽  
2012 ◽  
Vol 3 (1) ◽  
Author(s):  
Blair L. Strang ◽  
Steeve Boulant ◽  
Tomas Kirchhausen ◽  
Donald M. Coen

ABSTRACTDrastic reorganization of the nucleus is a hallmark of herpesvirus replication. This reorganization includes the formation of viral replication compartments, the subnuclear structures in which the viral DNA genome is replicated. The architecture of replication compartments is poorly understood. However, recent work with human cytomegalovirus (HCMV) showed that the viral DNA polymerase subunit UL44 concentrates and viral DNA synthesis occurs at the periphery of these compartments. Any cellular factors involved in replication compartment architecture are largely unknown. Previously, we found that nucleolin, a major protein component of nucleoli, associates with HCMV UL44 in infected cells and is required for efficient viral DNA synthesis. Here, we show that nucleolin binds to purified UL44. Confocal immunofluorescence analysis demonstrated colocalization of nucleolin with UL44 at the periphery of replication compartments. Pharmacological inhibition of viral DNA synthesis prevented the formation of replication compartments but did not abrogate association of UL44 and nucleolin. Thus, association of UL44 and nucleolin is unlikely to be a nonspecific effect related to development of replication compartments. No detectable colocalization of 5-ethynyl-2′-deoxyuridine (EdU)-labeled viral DNA with nucleolin was observed, suggesting that nucleolin is not directly involved in viral DNA synthesis. Small interfering RNA (siRNA)-mediated knockdown of nucleolin caused improper localization of UL44 and a defect in EdU incorporation into viral DNA. We propose a model in which nucleolin anchors UL44 at the periphery of replication compartments to maintain their architecture and promote viral DNA synthesis.IMPORTANCEHuman cytomegalovirus (HCMV) is an important human pathogen. HCMV infection causes considerable rearrangement of the structure of the nucleus, largely due to the formation of viral replication compartments within the nucleus. Within these compartments, the virus replicates its DNA genome. We previously demonstrated that nucleolin is required for efficient viral DNA synthesis and now find that the nucleolar protein nucleolin interacts with a subunit of the viral DNA polymerase, UL44, specifically at the periphery of replication compartments. Moreover, we find that nucleolin is required to properly localize UL44 at this region. Nucleolin is, therefore, involved in the organization of proteins within replication compartments. This, to our knowledge, is the first report identifying a cellular protein required for maintaining replication compartment architecture.


Sign in / Sign up

Export Citation Format

Share Document