dna amplification
Recently Published Documents


TOTAL DOCUMENTS

1808
(FIVE YEARS 344)

H-INDEX

93
(FIVE YEARS 9)

Author(s):  
Vassilios E. Papadopoulos ◽  
Ioanna N. Kefala ◽  
Georgia D. Kaprou ◽  
Angeliki Tserepi ◽  
George Kokkoris

2022 ◽  
Author(s):  
Kyungsup Han ◽  
Insup Kim ◽  
Wei Xuan Chan ◽  
Sanglae Kim ◽  
Jeong-Hwan Kim ◽  
...  

Abstract A non-instrumented, single-use, affordable, and fully- yet safely-disposable DNA analysis system for Point Of Care (POC) diagnostic process has been proposed by integrating (1) a hydration-reactive mixture for a portable heating element as a powerless actuator, (2) commercially available optical adhesive films as valves, and (3) an exothermic reaction-based recombinant polymerase amplification (RPA) process for non-instrumented DNA amplification. The operational error tolerance of the adhesive valves was evaluated by gas production and long-lasting ability, and the amplification performance of the RPA device was validated by gel electrophoresis. Finally, a DNA analysis device was fabricated and tested based on a hydration reaction with a DNA extraction microfluidic channel and an exothermic reaction-based RPA device. In the DNA extraction process, dimethyl adipimidate (DMA) solution was used to eliminate some required injection steps from the extraction process. The integrated system's functionality was successfully demonstrated, and the suggested system could become a foundation for the ultimate total solution for POC DNA analysis.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Arita Sabriu-Haxhijaha ◽  
Velimir Stojkovski ◽  
Gordana Ilievska ◽  
Dean Jankuloski ◽  
Katerina Blagoevska

Abstract As the number of genetically modified crops increases rapidly, their accurate detection is significant for labelling and safety assessment. Currently, real-time PCR is the “golden standard” method for GMO detection. Hence, extraction of high quality DNA represents a crucial step for accurate and efficient DNA amplification. For GMO presence evaluation in the extracted DNA from raw corn kernels and roasted soybean, we used real-time PCR method, in consistent with the ISO17025 accreditation standards. As for DNA extraction, modified basic SDS protocol by adding RNase A enzyme in different steps of the protocol, with different time and temperature of incubation was used. The results showed as most suitable, the protocol where 10 µl of RNase A enzyme was added together with the lysis buffer at 65 °C for 30 minutes. Data for DNA yield and purity for roasted soybean was 469.6±3.3 µg/ml with A260/280 absorbance ratio 1.78±0.01. Suitability of DNA extracts for GMO analysis was assessed by screening for the presence of 35S promotor and Tnos terminator. Diluted extracts in concentrations 10, 1, 0.1, 0.01 and 0.0027 ng/µl, were tested in six replicates. Positive signal of amplification (LOD) was detected in all concentrations for both genetic elements in both matrices. The LOQ for 35S and Tnos for both matrices was 0.1 ng, while for Tnos in raw corn kernels was 0.01 ng. This in-house developed DNA extraction method is simple and obtains high-quality DNA suitable for GMO screening of 35S promotor and Tnos terminator in both raw and processed matrices.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 60
Author(s):  
Subha Dahal ◽  
Ran Cheng ◽  
Peter K. Cheung ◽  
Terek Been ◽  
Ramy Malty ◽  
...  

Medicinal chemistry optimization of a previously described stilbene inhibitor of HIV-1, 5350150 (2-(2-(5-nitro-2-thienyl)vinyl)quinoline), led to the identification of the thiazole-5-carboxamide derivative (GPS491), which retained potent anti-HIV-1 activity with reduced toxicity. In this report, we demonstrate that the block of HIV-1 replication by GPS491 is accompanied by a drastic inhibition of viral gene expression (IC50 ~ 0.25 µM), and alterations in the production of unspliced, singly spliced, and multiply spliced HIV-1 RNAs. GPS491 also inhibited the replication of adenovirus and multiple coronaviruses. Low µM doses of GPS491 reduced adenovirus infectious yield ~1000 fold, altered virus early gene expression/viral E1A RNA processing, blocked viral DNA amplification, and inhibited late (hexon) gene expression. Loss of replication of multiple coronaviruses (229E, OC43, SARS-CoV2) upon GPS491 addition was associated with the inhibition of viral structural protein expression and the formation of virus particles. Consistent with the observed changes in viral RNA processing, GPS491 treatment induced selective alterations in the accumulation/phosphorylation/function of splicing regulatory SR proteins. Our study establishes that a compound that impacts the activity of cellular factors involved in RNA processing can prevent the replication of several viruses with minimal effect on cell viability.


Author(s):  
S.A. Ramazanova ◽  
◽  
V.G. Savichenko ◽  
E.G. Ustarkhanova ◽  
E.D. Loginova ◽  
...  

Soybean is the major protein-oil crop of a huge economic importance. Currently, to describe the new cultivars being applied for a patent there are used the modern methods based on an analysis of microsatellite (SSR) loci of DNA. The purposes of this work were a search of the new microsatellite markers to optimize the existing technology of soybean cultivars certification and identification as well as selection of conditions for PCR analysis and to test them on cultivars from the VIR’s collection. Seven microsatellite loci demonstrated the high polymorphism level on soybean cultivars and located in the different chromosomes were chosen in the literary sources and librarian data bases. The optimal temperatures for annealing were selected empirically for all the pairs of SSR-markers. The results of DNA amplification of 20 soybean genotypes showed all seven studied SSR-loci were polyallel. In general, we revealed 22 alleles that on average are 3.1 per a locus. The effective number of alleles Ne for the studied soybean genotypes varied from 1.69 to 2.27 and on average was equal to 2.01. An average meaning of an index of the polymorphic information content (PIC) was 0.50. All the investigated soybean samples have the unique sets of alleles by the studied loci. Seven approbated loci can be used in development of an effective technology for identification and certification of the soybean genotypes.


2021 ◽  
Author(s):  
Piotr M. Skowron ◽  
Agnieszka Zylicz-Stachula

DNA-FACE™ (DNA Fragment Amplification & Concatemeric Expressed Nucleic Acids and Proteins) is a universal biotechnological platform, developed as Escherichia coli (E. coli) system. It is based on the ordered, head-to-tail directional ligation of the amplified DNA fragments. The technology enables the construction of targeted biomolecules - genetically programmed, concatemeric DNA, RNA, and proteins, designed to fit a particular task. The constructed, “artificial” (never seen in Nature) tandem repeat macromolecules, with specialized functions, may contain up to 500 copies of monomeric units. The technology greatly exceeds the current capabilities of chemical gene synthesis. The vector-enzymatic DNA fragment amplification assembles the DNA segments, forming continuous Open Reading Frames (ORFs). The obtained ORFs are ready for high-level expression in E. coli without a need for subcloning. The presented method has potential applications in pharmaceutical industry and tissue engineering, including vaccines, biological drugs, drug delivery systems, mass-production of peptide-derived biomaterials, industrial and environmental processes. The technology has been patented worldwide and used successfully in the construction of anti-HBV vaccines, pro-regenerative biological drugs and, recently, the anti-SARS-CoV-2 vaccine. The anti-SARS-CoV-2 vaccine, developed using the DNA-FACE™ technology, is nontoxic and induces strong immunological response to recombinant human spike and nucleocapsid proteins, as shown in animal studies.


Plant Disease ◽  
2021 ◽  
Author(s):  
Xinyu Yang ◽  
Lin Sun ◽  
Huiying Sun ◽  
Yingzhe Hong ◽  
Zihao Xia ◽  
...  

Clubroot caused by Plasmodiophora brassicae is a serious threat to cruciferous crops around the world. The resting spores of P. brassicae are primary source of infection and can survive in soil for many years. Detection of resting spores in soil is essential for forecasting clubroot prevalence. Detection of P. brassicae has been relying on plant bioassays or polymerase chain reaction (PCR)-based methods. The loop-mediated isothermal DNA amplification (LAMP) is a promising approach for microorganism detection with the advantage of high sensitivity, being accurate and convenient to visualize. In this study, we developed a LAMP assay for detection of P. brassicae in soil, roots and seeds. This method can detect P. brassicae at a minimal amount of 1 fg plasmid DNA or 10 resting spores in the soil. Compared to conventional PCR, the LAMP was more sensitive in detection P. brassicae at the lower levels in soil samples. In conclusion, we elaborated a sensitive, accurate and easy-to-use LAMP assay to detect P. brassicae, which will facilitate to plan sustainable clubroot management.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Alix Warburton ◽  
Tovah E. Markowitz ◽  
Joshua P. Katz ◽  
James M. Pipas ◽  
Alison A. McBride

AbstractOncogenic human papillomavirus (HPV) genomes are often integrated into host chromosomes in HPV-associated cancers. HPV genomes are integrated either as a single copy or as tandem repeats of viral DNA interspersed with, or without, host DNA. Integration occurs frequently in common fragile sites susceptible to tandem repeat formation and the flanking or interspersed host DNA often contains transcriptional enhancer elements. When co-amplified with the viral genome, these enhancers can form super-enhancer-like elements that drive high viral oncogene expression. Here we compiled highly curated datasets of HPV integration sites in cervical (CESC) and head and neck squamous cell carcinoma (HNSCC) cancers, and assessed the number of breakpoints, viral transcriptional activity, and host genome copy number at each insertion site. Tumors frequently contained multiple distinct HPV integration sites but often only one “driver” site that expressed viral RNA. As common fragile sites and active enhancer elements are cell-type-specific, we mapped these regions in cervical cell lines using FANCD2 and Brd4/H3K27ac ChIP-seq, respectively. Large enhancer clusters, or super-enhancers, were also defined using the Brd4/H3K27ac ChIP-seq dataset. HPV integration breakpoints were enriched at both FANCD2-associated fragile sites and enhancer-rich regions, and frequently showed adjacent focal DNA amplification in CESC samples. We identified recurrent integration “hotspots” that were enriched for super-enhancers, some of which function as regulatory hubs for cell-identity genes. We propose that during persistent infection, extrachromosomal HPV minichromosomes associate with these transcriptional epicenters and accidental integration could promote viral oncogene expression and carcinogenesis.


Author(s):  
Samuel T. da S. Maraschin ◽  
Paulo R. da S. Pereira ◽  
Carlos A. Cima ◽  
Luise C. Dallo ◽  
Priscila S. Lora ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document