rna interference
Recently Published Documents


TOTAL DOCUMENTS

5775
(FIVE YEARS 730)

H-INDEX

173
(FIVE YEARS 16)

2022 ◽  
Vol 23 (2) ◽  
pp. 921
Author(s):  
Shang-Hung Lin ◽  
Ji-Chen Ho ◽  
Sung-Chou Li ◽  
Yu-Wen Cheng ◽  
Chung-Yuan Hsu ◽  
...  

Psoriatic arthritis (PsA) results from joint destruction by osteoclasts. The promising efficacy of TNF-α blockage indicates its important role in osteoclastogenesis of PsA. WNT ligands actively regulate osteoclastogenesis. We investigated how WNT ligands activate osteoclasts amid the TNF-α milieu in PsA. We first profiled the expression of WNT ligands in CD14+ monocyte-derived osteoclasts (MDOC) from five PsA patients and five healthy controls (HC) and then validated the candidate WNT ligands in 32 PsA patients and 16 HC. Through RNA interference against WNT ligands in MDOC, we determined the mechanisms by which TNF-α exerts its effects on osteclastogenesis or chemotaxis. WNT5A was selectively upregulated by TNF-α in MDOC from PsA patients. The number of CD68+WNT5A+ osteoclasts increased in PsA joints. CXCL1, CXCL16, and MCP-1 was selectively increased in supernatants of MDOC from PsA patients. RNA interference against WNT5A abolished the increased MCP-1 from MDOC and THP-1-cell-derived osteoclasts. The increased migration of osteoclast precursors (OCP) induced by supernatant from PsA MDOC was abolished by the MCP-1 neutralizing antibody. WNT5A and MCP-1 expressions were decreased in MDOC from PsA patients treated by biologics against TNF-α but not IL-17. We conclude that TNF-α recruits OCP by increased MCP-1 production but does not directly activate osteoclastogenesis in PsA.


2022 ◽  
Vol 23 (2) ◽  
pp. 873
Author(s):  
Deepani D. Fernando ◽  
Pasi K. Korhonen ◽  
Robin B. Gasser ◽  
Katja Fischer

In a quest for new interventions against scabies—a highly significant skin disease of mammals, caused by a parasitic mite Sarcoptes scabiei—we are focusing on finding new intervention targets. RNA interference (RNAi) could be an efficient functional genomics approach to identify such targets. The RNAi pathway is present in S. scabiei and operational in the female adult mite, but other developmental stages have not been assessed. Identifying potential intervention targets in the egg stage is particularly important because current treatments do not kill this latter stage. Here, we established an RNAi tool to silence single-copy genes in S. scabiei eggs. Using sodium hypochlorite pre-treatment, we succeeded in rendering the eggshell permeable to dsRNA without affecting larval hatching. We optimised the treatment of eggs with gene-specific dsRNAs to three single-copy target genes (designated Ss-Cof, Ss-Ddp, and Ss-Nan) which significantly and repeatedly suppressed transcription by ~66.6%, 74.3%, and 84.1%, respectively. Although no phenotypic alterations were detected in dsRNA-treated eggs for Ss-Cof and Ss-Nan, the silencing of Ss-Ddp resulted in a 38% reduction of larval hatching. This RNAi method is expected to provide a useful tool for larger-scale functional genomic investigations for the identification of essential genes as potential drug targets.


2022 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Zhen Ye ◽  
Mai Mohamed Abdelmoaty ◽  
Stephen M. Curran ◽  
Shetty Ravi Dyavar ◽  
Devendra Kumar ◽  
...  

RNA interference (RNAi) molecules have tremendous potential for cancer therapy but are limited by insufficient potency after intravenous (IV) administration. We previously found that polymer complexes (polyplexes) formed between 3′-cholesterol-modified siRNA (Chol-siRNA) or DsiRNA (Chol-DsiRNA) and the cationic diblock copolymer PLL[30]-PEG[5K] greatly increase RNAi potency against stably expressed LUC mRNA in primary syngeneic murine breast tumors after daily IV dosing. Chol-DsiRNA polyplexes, however, maintain LUC mRNA suppression for ~48 h longer after the final dose than Chol-siRNA polyplexes, which suggests that they are the better candidate formulation. Here, we directly compared the activities of Chol-siRNA polyplexes and Chol-DsiRNA polyplexes in primary murine 4T1 breast tumors against STAT3, a therapeutically relevant target gene that is overexpressed in many solid tumors, including breast cancer. We found that Chol-siSTAT3 polyplexes suppressed STAT3 mRNA in 4T1 tumors with similar potency (half-maximal ED50 0.3 mg/kg) and kinetics (over 96 h) as Chol-DsiSTAT3 polyplexes, but with slightly lower activity against total Stat3 protein (29% vs. 42% suppression) and tumor growth (11.5% vs. 8.6% rate-based T/C ratio) after repeated IV administration of equimolar, tumor-saturating doses every other day. Thus, both Chol-siRNA polyplexes and Chol-DsiRNA polyplexes may be suitable clinical candidates for the RNAi therapy of breast cancer and other solid tumors.


Author(s):  
Hannah Hollowell ◽  
Lynne K. Rieske

AbstractThe efficacy and high specificity of the RNA interference pathway has prompted its exploration as a potential molecular management tool for many insect pests, including the destructive southern pine beetle, Dendroctonus frontalis Zimmermann, in which gene knockdown and mortality via double-stranded RNAs (dsRNAs) have already been demonstrated in the laboratory. The nucleotide sequence of dsRNAs requires an exact match of at least 16 nucleotides with the targeted messenger RNA to trigger knockdown of that gene. This allows vital genes in a target pest to be silenced and mortality induced while reducing the probability of adverse effects in nontarget organisms. However, prior to utilization in forest ecosystems, demonstration of the specificity of dsRNAs through laboratory bioassays evaluating potential nontarget effects on model insects is required for proper risk assessment analyses. Consequently, we evaluated three SPB-specific dsRNAs for lethal effects, sublethal effects (larval growth rate, adult emergence or adult fecundity), and relative gene expression in three model nontarget insects representing key functional guilds, including a predator, herbivore, and pollinator. The SPB-specific dsRNAs had no effect on survival of our nontarget insects. Additionally, no sublethal effects were found and the gene expression analyses corroborated bioinformatic analyses in finding no gene knockdown. Our findings support the high specificity of RNAi technology and provide support for its development and deployment for protection of conifer forests against SPB with minimal nontarget concerns.


ACS Omega ◽  
2022 ◽  
Author(s):  
Yoshiaki Kobayashi ◽  
Daiki Fukuhara ◽  
Dai Akase ◽  
Misako Aida ◽  
Kumiko Ui-Tei
Keyword(s):  

2022 ◽  
Author(s):  
Xuekai Shi ◽  
Xiaojian Liu ◽  
Anastasia M.W. Cooper ◽  
Kristopher Silver ◽  
Hans Merzendorfer ◽  
...  

2022 ◽  
Vol 17 (2) ◽  
pp. 362
Author(s):  
Yi Li ◽  
Jian Wu ◽  
Zhen-Yu Zhu ◽  
Zhi-Wei Fan ◽  
Ying Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document