scholarly journals Blood pressure lowering with alcohol‐mediated renal denervation using the Peregrine infusion Catheter is independent of injection site location

Author(s):  
Felix Mahfoud ◽  
Stefan Bertog ◽  
Lucas Lauder ◽  
Michael Böhm ◽  
Axel Schmid ◽  
...  

2018 ◽  
Vol 315 (5) ◽  
pp. H1368-H1382 ◽  
Author(s):  
John S. Clemmer ◽  
W. Andrew Pruett ◽  
Robert L. Hester ◽  
Radu Iliescu ◽  
Thomas E. Lohmeier

Electrical stimulation of the baroreflex chronically suppresses sympathetic activity and arterial pressure and is currently being evaluated for the treatment of resistant hypertension. The antihypertensive effects of baroreflex activation are often attributed to renal sympathoinhibition. However, baroreflex activation also decreases heart rate, and robust blood pressure lowering occurs even after renal denervation. Because controlling renal sympathetic nerve activity (RSNA) and cardiac autonomic activity cannot be achieved experimentally, we used an established mathematical model of human physiology (HumMod) to provide mechanistic insights into their relative and combined contributions to the cardiovascular responses during baroreflex activation. Three-week responses to baroreflex activation closely mimicked experimental observations in dogs including decreases in blood pressure, heart rate, and plasma norepinephrine and increases in plasma atrial natriuretic peptide (ANP), providing validation of the model. Simulations showed that baroreflex-induced alterations in cardiac sympathetic and parasympathetic activity lead to a sustained depression of cardiac function and increased secretion of ANP. Increased ANP and suppression of RSNA both enhanced renal excretory function and accounted for most of the chronic blood pressure lowering during baroreflex activation. However, when suppression of RSNA was blocked, the blood pressure response to baroreflex activation was not appreciably impaired due to inordinate fluid accumulation and further increases in atrial pressure and ANP secretion. These simulations provide a mechanistic understanding of experimental and clinical observations showing that baroreflex activation effectively lowers blood pressure in subjects with previous renal denervation. NEW & NOTEWORTHY Both experimental and clinical studies have shown that the presence of renal nerves is not an obligate requirement for sustained reductions in blood pressure during chronic electrical stimulation of the carotid baroreflex. Simulations using HumMod, a mathematical model of integrative human physiology, indicated that both increased secretion of atrial natriuretic peptide and suppressed renal sympathetic nerve activity play key roles in mediating long-term reductions in blood pressure during chronic baroreflex activation.





2014 ◽  
Vol 32 (10) ◽  
pp. 2045-2053 ◽  
Author(s):  
Eva E. Vink ◽  
Willemien L. Verloop ◽  
Rianne B.C. Bost ◽  
Michiel Voskuil ◽  
Wilko Spiering ◽  
...  


2013 ◽  
Vol 29 (12) ◽  
pp. 1741.e1-1741.e3 ◽  
Author(s):  
Marcel Ruzicka ◽  
Brendan McCormick ◽  
Frans H.H. Leenen ◽  
Michael Froeschl ◽  
Swapnil Hiremath


2014 ◽  
Vol 127 (9) ◽  
pp. e3-e4 ◽  
Author(s):  
Robert von Arx ◽  
Emrush Rexhaj ◽  
Yves Allemann ◽  
Aris Moschovitis ◽  
Stephan Windecker ◽  
...  


2016 ◽  
Vol 9 (1) ◽  
pp. 14-22 ◽  
Author(s):  
James P. Howard ◽  
Matthew J. Shun-Shin ◽  
Adam Hartley ◽  
Deepak L. Bhatt ◽  
Henry Krum ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document