scholarly journals Trinexapac‐ethyl applications and lightweight rolling on ultradwarf bermudagrass putting greens

cftm ◽  
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Eric H. Reasor ◽  
James T. Brosnan
2021 ◽  
Author(s):  
Cameron Stephens ◽  
Travis W Gannon ◽  
Marc Cubeta ◽  
Tim L. Sit ◽  
Jim Kerns

Take-all root rot is a disease of ultradwarf bermudagrass putting greens caused by Gaeumannomyces graminis (Gg), Gaeumannomyces sp. (Gx), Gaeumannomyces graminicola (Ggram), Candidacolonium cynodontis (Cc), and Magnaporthiopsis cynodontis (Mc). Many etiological and epidemiological components of this disease remain unknown. Improving pathogen identification and our understanding of the aggressiveness of these pathogens along with growth at different temperatures will advance our knowledge of disease development to optimize management strategies. Take-all root rot pathogens were isolated from symptomatic bermudagrass root and stolon pieces from 16 different golf courses. Isolates of Gg, Gx, Ggram, Cc, and Mc were used to inoculate ‘Champion’ bermudagrass in an in planta aggressiveness assay. Each pathogen was also evaluated at 10, 15, 20, 25, 30, and 35C to determine growth temperature optima. Infected plant tissue was used to develop a real-time PCR high resolution melt assay for pathogen detection. This assay was able to differentiate each pathogen directly from infected plant tissue using a single primer pair. In general, Ggram, Gg, and Gx were the most aggressive while Cc and Mc exhibited moderate aggressiveness. Pathogens were more aggressive when incubated at 30C compared to 20C. While they grew optimally between 24.4 and 27.8C, pathogens exhibited limited growth at 35C and no growth at 10C. These data provide important information on this disease and its causal agents that may improve take-all root rot management.


cftm ◽  
2018 ◽  
Vol 4 (1) ◽  
pp. 1-3
Author(s):  
William D. Strunk ◽  
Kyley H. Dickson ◽  
John C. Sorochan

Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1286-1286 ◽  
Author(s):  
N. Walker

Meloidogyne marylandi is a nematode commonly associated with turfgrasses and has been reported to occur in Texas and Arkansas (1,3). In the fall of 2013, a stand of ultradwarf bermudagrass (Cynodon dactylon × C. transvaalensis) plants in a sand-based, research putting green in Stillwater, Oklahoma, exhibited symptoms of decline. Roots of the affected plants had small galls and upon staining of the root system, numerous egg masses were evident. Egg masses were collected, placed in water, and the morphology of 20 hatched, second-stage juveniles were examined. The characteristics of the juveniles were: body length averaged 393.1 ± 19.87 (range: 361 to 425) μm, mean width averaged 16.6 ± 0.7 (15.6 to 17.8) μm, stylet lengths averaged 12.1 ± 0.7 (10.4 to 12.9) μm, dorsal gland orifice from stylet base averaged 2.9 ± 0.4 (2.5 to 3.6) μm, tail lengths averaged 53.7 ± 3.8 (46.2 to 60.4) μm, and the hyaline region of the tails averaged 10.4 ± 1.1 (8.4 to 12.7) μm. Genomic DNA was extracted from six females that were removed from roots. Amplification and sequencing of the mitochondrial DNA region between COII and 16S rRNA genes was performed with primers 1RNAF (5′-TACCTTTGACCAATCACGCT-3′) and CO11R (5′-GGTCAATGTTCAGAAATTTGTGG-3′) as previously described (2). A PCR product approximately 510 bp in length was obtained and sequenced at the Oklahoma State University Core Facility. Sequences were compared with those in NCBI's nucleotide database using BLAST and had 97% identity with two sequences from M. marylandi (KC473862.1 and KC473863.1) and the next most similar species being M. graminis (JN241898.1) with 83% identity. To our knowledge, this is the first report of the root-knot nematode M. marylandi in Oklahoma. As bermudagrass becomes more commonly used for putting greens in the turfgrass transition zone, M. marylandi may become a more common and damaging pathogen in the region. References: (1) A. A. Elmi et al. Grass For. Sci. 55:166, 2000. (2) M. A. McClure et al. Plant Dis. 96:635, 2012. (3) J. L. Starr et al. Nematrop. 37:43, 2007.


Crop Science ◽  
2012 ◽  
Vol 52 (3) ◽  
pp. 1371-1378 ◽  
Author(s):  
Paul R. Giordano ◽  
Thomas A. Nikolai ◽  
Ray Hammerschmidt ◽  
Joseph M. Vargas

2012 ◽  
Vol 104 (4) ◽  
pp. 1176-1181 ◽  
Author(s):  
Joseph A. Roberts ◽  
James A. Murphy ◽  
Bruce B. Clarke

cftm ◽  
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Eric J. DeBoer ◽  
Douglas E. Karcher ◽  
John H. McCalla ◽  
Michael D. Richardson

Crop Science ◽  
2020 ◽  
Author(s):  
Austin M. Brown ◽  
James R. Harris ◽  
Clebson G. Gonçalves ◽  
John M. Peppers ◽  
Simone Magni ◽  
...  

HortScience ◽  
2016 ◽  
Vol 51 (9) ◽  
pp. 1171-1175
Author(s):  
Jordan M. Craft ◽  
Christian M. Baldwin ◽  
Wayne H. Philley ◽  
James D. McCurdy ◽  
Barry R. Stewart ◽  
...  

Traditional hollow-tine (HT) aerification programs can cause substantial damage to the putting green surface resulting in prolonged recovery. Despite the growing interest in new and alternative aerification technology, there is a lack of information in the literature comparing new or alternative technology with traditional methods on ultradwarf bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis (Burtt-Davy)] putting greens. Therefore, the objective of this research was to determine the best combination of dry-injection (DI) cultivation technology with modified traditional HT aerification programs to achieve minimal surface disruption without a compromise in soil physical properties. Research was conducted at the Mississippi State University golf course practice putting green from 1 June to 31 Aug. 2014 and 2015. Treatments included two HT sizes (0.6 and 1.3 cm diameter), various DI cultivation frequencies applied with a DryJect 4800, and a noncultivated control. The HT 1.3 cm diameter tine size had 76% greater water infiltration (7.6 cm depth) compared with the DI + HT 0.6 cm diameter tine size treatment. However, DI + HT 0.6 cm diameter tine size had greater water infiltration at the 10.1 cm depth than the noncultivated control. Results suggest a need for an annual HT aerification event due to reduced water infiltration and increased volumetric water content (VWC) in the noncultivated control treatment. It can be concluded that DI would be best used in combination with HT 1.3 or 0.6 cm diameter tine sizes to improve soil physical properties; however, the DI + HT 0.6 cm diameter tine size treatment resulted in minimum surface disruption while still improving soil physical properties compared with the noncultivated control.


Sign in / Sign up

Export Citation Format

Share Document