Chemical Shifts in Nucleic Acids Studied by Density Functional Theory Calculations and Comparison with Experiment

2012 ◽  
Vol 18 (39) ◽  
pp. 12372-12387 ◽  
Author(s):  
Judith M. Fonville ◽  
Marcel Swart ◽  
Zuzana Vokáčová ◽  
Vladimír Sychrovský ◽  
Judit E. Šponer ◽  
...  
2016 ◽  
Vol 34 (4) ◽  
pp. 886-904 ◽  
Author(s):  
Meryem Evecen ◽  
Hasan Tanak

AbstractIn this paper, the molecular geometry, vibrational frequencies and chemical shifts of (6-Methoxy-2-oxo-2H-chromen-4-yl)methyl pyrrolidine-1-carbodithioate in the ground state have been calculated using the Hartree-Fock and density functional methods with the 6-311++G(d,p) basis set. To investigate the nonlinear optical properties of the title compound, the polarizability and the first hyperpolarizability were calculated. The conformational properties of the molecule have been determined by analyzing molecular energy properties. Using the time dependent density functional theory, electronic absorption spectra have been calculated. Frontier molecular orbitals, natural bond orbitals, natural atomic charges and thermodynamical parameters were also investigated by using the density functional theory calculations.


Synlett ◽  
2019 ◽  
Vol 31 (02) ◽  
pp. 158-164 ◽  
Author(s):  
Leticia Chavelas-Hernández ◽  
Jonathan R. Valdéz-Camacho ◽  
Luis G. Hernández-Vázquez ◽  
Blanca E. Dominguez-Mendoza ◽  
María G. Vasquez-Ríos ◽  
...  

The chemical shifts of protons depend not only on the properties of the solute molecule but also on the medium in which the solute resides. A series of β-lactams with various substitution patterns were synthesized to study aromatic-solvent-induced shifts (ASISs) in chloroform and benzene by using 1H NMR spectroscopy. The results agreed with those obtained by theoretical density functional theory calculations. The protons of the β-lactam ring are the most affected by the ASIS effect, and they tend to overlap due to the anisotropic effect of benzene.


2006 ◽  
Vol 71 (11-12) ◽  
pp. 1525-1531 ◽  
Author(s):  
Wojciech Grochala

The enthalpy of four polymorphs of CaN has been scrutinized at 0 and 100 GPa using density functional theory calculations. It is shown that structures of diamagnetic calcium diazenide (Ca2N2) are preferred over the cubic ferromagnetic polymorph (CaN) postulated before, both at 0 and 100 GPa.


Sign in / Sign up

Export Citation Format

Share Document