ChemInform Abstract: SUBSTITUENT EFFECTS ON THE INTRINSIC ACIDITIES OF BENZOIC ACIDS DETERMINED BY GAS PHASE PROTON TRANSFER EQUILIBRIA MEASUREMENTS

1974 ◽  
Vol 5 (34) ◽  
Author(s):  
R. YAMDAGNI ◽  
T. B. MCMAHON ◽  
P. KEBARLE
1990 ◽  
Vol 68 (11) ◽  
pp. 2070-2077 ◽  
Author(s):  
Gary J. C. Paul ◽  
Paul Kebarle

The equilibria, YPhOH + Br− = YPhOH-Br−, involving 26 differently substituted phenols, were determined with a pulsed high pressure mass spectrometer. The −ΔG0 evaluated from the equilibrium constants represent the hydrogen bond free energies in YPhOH-Br−. These data and data for X− = Cl− and I−, determined previously in this laboratory, are used to examine the substituent effects on the hydrogen bonding. It was found that the hydrogen bond energies in YPhOH-X− increase approximately linearly with the gas phase acidities of the phenols, YPhOH. This is in agreement with earlier observations that showed the bond energies in AH-B−, where AH were oxygen and nitrogen acids and B− closed shell anions, increase with increasing acidity of AH.A detailed analysis of the substituent effects, which is possible for YPhOH-X−, shows that the relationship with the acidity of AH can be divided into two parts. One is the increasing extent of actual proton transfer from AH on formation of the hydrogen bonded complex. Such proton transfer occurs in YPhOH-X− only for the series X− = Cl−. The second effect, which occurs for Cl− and is dominant for Br− and I−, is not directly related to the acidity of the phenols (or AH in general) but depends on a similarity of the substituent effects on the acidity and the stabilization of YPhOH-X− (or AH-B− in general). The dominant contribution to YPhOH-X− stabilization in this case is due to the field effects of the substituents, i.e., π delocalization plays only a small part. Therefore, the correlation with the acidity of YPhOH, where π delocalization is important, is not very close. Keywords: hydrogen bonding, substituent effects, ion–molecule equilibria, stability constants, thermochemistry.


1985 ◽  
Vol 63 (5) ◽  
pp. 1068-1072 ◽  
Author(s):  
Zdenek Friedl

Relative proton transfer enthalpies δΔH0 and homolytic bond strengths δΔH0 (A—H) of sp and ap conformers of 5-fluoropentanoic acid, as well as some related aliphatic and 4-X-bicyclo[2.2.2]octane-1-carboxylic halogenoacids, have been calculated by the MNDO method. The results, together with literature data concerning the gas phase acidities, were compared with the prediction of the electrostatic theory. It is shown that the substituent effects on acidities of carboxylic acids are largely due to substituent interactions in the anions and only to a smaller extent to interactions in the neutral acids. A small contribution (about one-eighth to one-fourth as large in magnitude but of opposite sign) is possibly also made by substituent effects on homolytic bond strengths DH0 (A—H).


2009 ◽  
Vol 74 (1) ◽  
pp. 29-42 ◽  
Author(s):  
Vilve Nummert ◽  
Mare Piirsalu ◽  
Signe Vahur ◽  
Oksana Travnikova ◽  
Ilmar A. Koppel

The second-order rate constants k (in dm3 mol–1 s–1) for alkaline hydrolysis of phenyl esters of meta-, para- and ortho-substituted benzoic acids, X-C6H4CO2C6H5, have been measured spectrophotometrically in aqueous 0.5 and 2.25 M Bu4NBr at 25 °C. The substituent effects for para and meta derivatives were described using the Hammett relationship. For the ortho derivatives the Charton equation was used. For ortho-substituted esters two steric scales were involved: the EsB and the Charton steric (υ) constants. When going from pure water to aqueous 0.5 and 2.25 M Bu4NBr, the meta and para polar effects, the ortho inductive and resonance effects in alkaline hydrolysis of phenyl esters of substituted benzoic acids, became stronger nearly to the same extent as found for alkaline hydrolysis of C6H5CO2C6H4-X. The steric term of ortho-substituted esters was almost independent of the media considered. The rate constants of alkaline hydrolysis of ortho-, meta- and para-substituted phenyl benzoates (X-C6H4CO2C6H5, C6H5CO2C6H4-X) and alkyl benzoates, C6H5CO2R, in water, 0.5 and 2.25 M Bu4NBr were correlated with the corresponding IR stretching frequencies of carbonyl group, (ΔνCO)X.


Sign in / Sign up

Export Citation Format

Share Document