ChemInform Abstract: SYNTHESIS OF (.+-.)-5-HYDROXYMARMESIN: BIOGENETIC PRECURSOR OF THE SKIN PHOTOSENSITIZING AGENT BERGAPTEN

1980 ◽  
Vol 11 (40) ◽  
Author(s):  
P. RODIGHIERO ◽  
A. GUIOTTO ◽  
G. PASTORINI ◽  
P. MANZINI ◽  
F. DALL'ACQUA ◽  
...  
Photobiology ◽  
1991 ◽  
pp. 839-845
Author(s):  
G. Jori ◽  
R. Biolo ◽  
C. Milanesi ◽  
E. Reddi ◽  
G. Valduga

Author(s):  
Douglass F. Taber

Penaresidin A 3, isolated from the Okinawan marine sponge Penares sp., is a potent activator of actomyosin ATPase. B. V. Subba Reddy of the Indian Institute of Chemical Technology prepared (Tetrahedron Lett. 2014, 55, 49) the azetidine ring of 3 by mesyl­ation of the hydroxy sulfonamide 2, derived from 1, followed by cyclization. Allokainic acid 6 has become a useful tool for neurological studies. Radomir N. Saicic of the University of Belgrade found (Org. Lett. 2014, 16, 34) that the Tsuji–Trost cyclization of 4 to 5 proceeded with high diastereoselectivity, presumably by way of the enamine of the aldehyde. Floris P. J. T. Rutjes of Radboud University Nijmegen prepared (Org. Lett. 2014, 16, 2038) the starting material 7 for (−)-sedacryptine 9 via an enantioselective Mannich addition. The reagent of choice for the Aza–Achmatowicz rearrangement of 7 to 8 proved to be mCPBA. The intriguing tricyclic alkaloid (−)-lepistine 12 was isolated from the mushroom Clitocybe fasciculate. En route to the first-ever synthesis of 12, Satoshi Yokoshima and Tohru Fukuyama of Nagoya University cyclized (Org. Lett. 2014, 16, 2862) the gly­cidol-derived sulfonamide 10 to the azacycle 11. (+)-Septicine 15 is the biogenetic precursor to the phenanthrene alkaloid (+)-tylophorine. Stephen Hanessian of the Université de Montréal prepared (Org. Lett. 2014, 16, 232) 15 by condensing the proline-derived ketone 13 with the aldehyde 14. Mingji Dai of Purdue University elaborated (Angew. Chem. Int. Ed. 2014, 53, 3922) the amine 16 to the enone 17 by intramolecular Mannich alkylation followed by methylenation and allylic oxidation. Condensation with the sulfoxide 18 then delivered lyconadin C 19.


1987 ◽  
Vol 73 (1) ◽  
pp. 11-17 ◽  
Author(s):  
Renato Marchesini ◽  
Elsa Melloni ◽  
Giovanni Bottiroli ◽  
Salvatore Andreola ◽  
Giannino Fava ◽  
...  

The main side effect in photodynamic therapy is photosensitization of the patient's skin following systemic administration of the photosensitizing agent. In the case of superficial lesions, this problem can be avoided by topically applying the drug: in this way a local treatment can be performed. We tested the photosensitizing properties of a 2 % solution of TPPS (tetrasodium-tetraphenylporphinesulfonate) in a vehicle containing a penetration enhancer, Azone, on skin of nude mice. An aliquot of 0.1 ml/cm2 of the solution was painted on the skin overlying an s.c. implanted NMU-1 tumor. Subsequently, animals were sacrificed at different times after application. Fluorescence microscopy revealed that TPPS penetration depth was related to time elapsed after application and to painting modalities. Solution penetration was enhanced by wiping with ether immediately before painting. Irradiation at 80 mW/cm2 for 20 min with a dye laser emitting at 640 am, 4 h after TPPS application, produced necrosis of the upper skin layers, up to 0.2 mm in depth. These findings suggest that topical TPPS administration, followed by laser irradiation, may be a suitable treatment modality for skin lesions involving epithelial layers, even though several aspects of this metodology need further investigation.


ChemInform ◽  
2010 ◽  
Vol 22 (31) ◽  
pp. no-no
Author(s):  
F. VEZNIK ◽  
A. GUGGISBERG ◽  
M. HESSE
Keyword(s):  

1994 ◽  
Vol 35 (25) ◽  
pp. 4383-4386 ◽  
Author(s):  
Jun'ichi Kobayashi ◽  
Masashi Tsuda ◽  
Naoko Kawasaki ◽  
Keita Matsumoto ◽  
Takashi Adachi

2004 ◽  
Vol 48 (6) ◽  
pp. 2000-2006 ◽  
Author(s):  
Joseph M. Bliss ◽  
Chad E. Bigelow ◽  
Thomas H. Foster ◽  
Constantine G. Haidaris

ABSTRACT The in vitro susceptibility of pathogenic Candida species to the photodynamic effects of the clinically approved photosensitizing agent Photofrin was examined. Internalization of Photofrin by Candida was confirmed by confocal fluorescence microscopy, and the degree of uptake was dependent on incubation concentration. Uptake of Photofrin by Candida and subsequent sensitivity to irradiation was influenced by culture conditions. Photofrin uptake was poor in C. albicans blastoconidia grown in nutrient broth. However, conversion of blastoconidia to filamentous forms by incubation in defined tissue culture medium resulted in substantial Photofrin uptake. Under conditions where Photofrin was effectively taken up by Candida, irradiated organisms were damaged in a drug dose- and light-dependent manner. Uptake of Photofrin was not inhibited by azide, indicating that the mechanism of uptake was not dependent on energy provided via electron transport. Fungal damage induced by Photofrin-mediated photodynamic therapy (PDT) was determined by evaluation of metabolic activity after irradiation. A strain of C. glabrata took up Photofrin poorly and was resistant to killing after irradiation. In contrast, two different strains of C. albicans displayed comparable levels of sensitivity to PDT. Furthermore, a reference strain of C. krusei that is relatively resistant to fluconazole compared to C. albicans was equally sensitive to C. albicans at Photofrin concentrations of ≥3 μg/ml. The results indicate that photodynamic therapy may be a useful adjunct or alternative to current anti-Candida therapeutic modalities, particularly for superficial infections on surfaces amenable to illumination.


Sign in / Sign up

Export Citation Format

Share Document