photodynamic therapy
Recently Published Documents


TOTAL DOCUMENTS

19472
(FIVE YEARS 3382)

H-INDEX

195
(FIVE YEARS 17)

2022 ◽  
Vol 23 ◽  
pp. 100688
Author(s):  
S. Ghosh ◽  
A.R. Gul ◽  
P. Xu ◽  
S.Y. Lee ◽  
R. Rafique ◽  
...  

2022 ◽  
Vol 452 ◽  
pp. 214306
Author(s):  
Ronghui Zhou ◽  
Xin Zeng ◽  
Hang Zhao ◽  
Qianming Chen ◽  
Peng Wu

2022 ◽  
Vol 146 ◽  
pp. 112567
Author(s):  
Liguo Xie ◽  
Xiuling Ji ◽  
Qi Zhang ◽  
Yunlin Wei
Keyword(s):  

Author(s):  
Maria Vadalà ◽  
Massimo Castellucci ◽  
Giulia Guarrasi ◽  
Giovanni Cillino ◽  
Vincenza Maria Elena Bonfiglio ◽  
...  

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 210
Author(s):  
Sooho Yeo ◽  
Il Yoon ◽  
Woo Kyoung Lee

Photodynamic therapy (PDT) is a non-invasive and tumour-specific therapy. Photosensitizers (PSs) (essential ingredients in PDT) aggregate easily owing to their lipophilic properties. The aim of this study was to synthesise a PS (methyl pheophorbide a, MPa) and design a biocompatible lipid-based nanocarrier to improve its bioavailability and pharmacological effects. MPa-loaded nano-transfersomes were fabricated by sonication. The characteristics of synthesised PS and nano-transfersomes were assessed. The effects of PDT were evaluated by 1,3-diphenylisobenzofuran assay and by measuring photo-cytotoxicity against HeLa and A549 cell lines. The mean particle size and zeta potential for nano-transfersomes ranged from 95.84 to 267.53 nm and −19.53 to −45.08 mV, respectively. Nano-transfersomes exhibited sustained drug release for 48 h in a physiological environment (as against burst release in an acidic environment), which enables its use as a pH-responsive drug release system in PDT with enhanced photodynamic activity and reduced side effects. The formulations showed light cytotoxicity, but no dark toxicity, which meant that light irradiation resulted in anti-cancer effects. Additionally, formulations with the smallest size exhibited photodynamic activity to a larger extent than those with the highest loading capacity or free MPa. These results suggest that our MPa-loaded nano-transfersome system is a promising anti-cancer strategy for PDT.


Author(s):  
Hong-Xia Zhang ◽  
Hao-Hua Lin ◽  
Dan Su ◽  
De-Chao Yang ◽  
Jian-Yong Liu

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 196
Author(s):  
Mosar Corrêa Rodrigues ◽  
Wellington Tavares de Sousa Júnior ◽  
Thayná Mundim ◽  
Camilla Lepesqueur Costa Vale ◽  
Jaqueline Vaz de Oliveira ◽  
...  

Photodynamic therapy (PDT) has been clinically employed to treat mainly superficial cancer, such as basal cell carcinoma. This approach can eliminate tumors by direct cytotoxicity, tumor ischemia, or by triggering an immune response against tumor cells. Among the immune-related mechanisms of PDT, the induction of immunogenic cell death (ICD) in target cells is to be cited. ICD is an apoptosis modality distinguished by the emission of damage-associated molecular patterns (DAMP). Therefore, this study aimed to analyze the immunogenicity of CT26 and 4T1 treated with PDT mediated by aluminum-phthalocyanine in nanoemulsion (PDT-AlPc-NE). Different PDT-AlPc-NE protocols with varying doses of energy and AlPc concentrations were tested. The death mechanism and the emission of DAMPs–CRT, HSP70, HSP90, HMGB1, and IL-1β–were analyzed in cells treated in vitro with PDT. Then, the immunogenicity of these cells was assessed in an in vivo vaccination-challenge model with BALB/c mice. CT26 and 4T1 cells treated in vitro with PDT mediated by AlPc IC50 and a light dose of 25 J/cm² exhibited the hallmarks of ICD, i.e., these cells died by apoptosis and exposed DAMPs. Mice injected with these IC50 PDT-treated cells showed, in comparison to the control, increased resistance to the development of tumors in a subsequent challenge with viable cells. Mice injected with 4T1 and CT26 cells treated with higher or lower concentrations of photosensitizer and light doses exhibited a significantly lower resistance to tumor development than those injected with IC50 PDT-treated cells. The results presented in this study suggest that both the photosensitizer concentration and light dose affect the immunogenicity of the PDT-treated cells. This event can affect the therapy outcomes in vivo.


Sign in / Sign up

Export Citation Format

Share Document