ChemInform Abstract: Gas Phase Reactions. Part 91. Thermal and Heterogeneously Catalyzed N2 Elimination of Azo-Compounds R-N=N-R (R: CH3, C3H5, C6H5)

ChemInform ◽  
2010 ◽  
Vol 24 (10) ◽  
pp. no-no
Author(s):  
H. BOCK ◽  
B. BERKNER
1992 ◽  
Vol 47 (11) ◽  
pp. 1551-1560 ◽  
Author(s):  
Hans Bock ◽  
Bodo Berkner

Thermal decompositions of azo compounds in the gas phase under reduced pressure are further investigated using photoelectron spectroscopic gas analysis. Passing diallyl, diphenyl and phenylmethyl derivatives either through a short-pathway pyrolysis (SPP) apparatus or through an external thermal reactor (ETR) results in the following fragmentations: Under nearly unimolecular conditions (SPP, 10-4 mbar pressure), diallyldiazene decomposes above 600 K to N2 and hexadiene-1,5 with the allyl radical as a detectable intermediate. The PE spectra recorded for diphenyldiazene above 1000 K (ETR, 1-2 mbar pressure) show N2, benzene, as well as traces of diphenyl. Phenylmethyldiazene yields above 800 K (SPP) predominantly N2, toluene, diphenyl and ethane with the methyl radical as the only detectable intermediate. Insertion of quartz wool into the pyrolysis tube (ETR) lowers the fragmentation temperatures, and in addition, above 850 K, HCN and aniline are PE spectroscopically identified. Surprisingly, this second reaction channel can be heterogeneously catalyzed: phenylmethyldiazene decomposes under 10-2 mbar pressure at a [Ni/SiO2] catalyst surface selectively to HCN and aniline.


Author(s):  
Victor N. Kondratiev ◽  
Evgeniĭ E. Nikitin

2012 ◽  
Vol 1 (1) ◽  
pp. P46-P53 ◽  
Author(s):  
Ran Zuo ◽  
Haiqun Yu ◽  
Nan Xu ◽  
Xiaokun He

1957 ◽  
Vol 79 (17) ◽  
pp. 4609-4616 ◽  
Author(s):  
Adon A. Gordus ◽  
John E. Willard

1993 ◽  
Vol 168 (2) ◽  
pp. 177-181 ◽  
Author(s):  
E Borsella ◽  
S Botti ◽  
R Alexandrescu ◽  
I Morjan ◽  
T Dikonimos-Makris ◽  
...  

The work described in this and the following paper is a continuation of that in parts I and II, devoted to elucidation of the mechanism of the reactions of methylene with chloroalkanes, with particular reference to the reactivities of singlet and triplet methylene in abstraction and insertion processes. The products of the reaction between methylene, prepared by the photolysis of ketene, and 1-chloropropane have been identified and estimated and their dependence on reactant pressures, photolysing wavelength and presence of foreign gases (oxygen and carbon mon­oxide) has been investigated. Both insertion and abstraction mechanisms contribute significantly to the over-all reaction, insertion being relatively much more important than with chloroethane. This type of process appears to be confined to singlet methylene. If, as seems likely, there is no insertion into C—Cl bonds under our conditions (see part IV), insertion into C2—H and C3—H bonds occurs in statistical ratio, approximately. On the other hand, the chlorine substituent reduces the probability of insertion into C—H bonds in its vicinity. As in the chloroethane system, both species of methylene show a high degree of selectivity in their abstraction reactions. We find that k S Cl / k S H >7.7, k T Cl / k T H < 0.14, where the k ’s are rate constants for abstraction, and the super- and subscripts indicate the species of methylene and the type of atom abstracted, respectively. Triplet methylene is discriminating in hydrogen abstraction from 1-C 3 H 7 Cl, the overall rates for atoms attached to C1, C2, C3 being in the ratios 2.63:1:0.


2004 ◽  
Vol 108 (46) ◽  
pp. 10080-10088 ◽  
Author(s):  
Inés Corral ◽  
Otilia Mó ◽  
Manuel Yáñez ◽  
Jean-Yves Salpin ◽  
Jeanine Tortajada ◽  
...  

2010 ◽  
Vol 114 (34) ◽  
pp. 9270-9288 ◽  
Author(s):  
Sébastien Canneaux ◽  
Bertrand Xerri ◽  
Florent Louis ◽  
Laurent Cantrel

Sign in / Sign up

Export Citation Format

Share Document