Gasphasen-Reaktionen, 91 [1-3]Thermische und heterogen-katalysierte N2-Abspaltung aus Azo-Verbindungen R–N=N–R (R = CH3, C3H5, C6H5) / Gas Phase Reactions, 91 [1-3]Thermal and Heterogeneously Catalyzed N2 Elimination of Azo-Compounds R–N=N–R (R = CH3, C3H5, C6H5)

1992 ◽  
Vol 47 (11) ◽  
pp. 1551-1560 ◽  
Author(s):  
Hans Bock ◽  
Bodo Berkner

Thermal decompositions of azo compounds in the gas phase under reduced pressure are further investigated using photoelectron spectroscopic gas analysis. Passing diallyl, diphenyl and phenylmethyl derivatives either through a short-pathway pyrolysis (SPP) apparatus or through an external thermal reactor (ETR) results in the following fragmentations: Under nearly unimolecular conditions (SPP, 10-4 mbar pressure), diallyldiazene decomposes above 600 K to N2 and hexadiene-1,5 with the allyl radical as a detectable intermediate. The PE spectra recorded for diphenyldiazene above 1000 K (ETR, 1-2 mbar pressure) show N2, benzene, as well as traces of diphenyl. Phenylmethyldiazene yields above 800 K (SPP) predominantly N2, toluene, diphenyl and ethane with the methyl radical as the only detectable intermediate. Insertion of quartz wool into the pyrolysis tube (ETR) lowers the fragmentation temperatures, and in addition, above 850 K, HCN and aniline are PE spectroscopically identified. Surprisingly, this second reaction channel can be heterogeneously catalyzed: phenylmethyldiazene decomposes under 10-2 mbar pressure at a [Ni/SiO2] catalyst surface selectively to HCN and aniline.

1987 ◽  
Vol 42 (3) ◽  
pp. 301-307 ◽  
Author(s):  
Hans Bock ◽  
Ralph Dammel

The HCl elimination from β-chloroethyl azide (1-azido-2-chloroethane) over potassium tert. butanolate at 350 K in a low pressure flow system is optimized using PE spectroscopic real-time gas analysis. The highly explosive vinyl azide formed can be purified by cool-trapping the by-products. Its subsequent and virtually hazard-free pyrolysis yields 2H-azirine, which can be isolated at temperatures below 240 K.In contrast, the direct pyrolysis of β-chloroethyl azide requires temperatures above 710 K and results in a simultaneous split-off of both HCl and N2, yielding acetonitrile as the main thermolysis product. No intermediates such as β-chloroethanimine or ketenimine are observed, a result which is interpreted in terms of chemical activation


1989 ◽  
Vol 149 ◽  
Author(s):  
Jun-Ichi Hanna ◽  
Akira Kamo ◽  
Tohru Komiya ◽  
Hien D. Nguyen ◽  
Isamu Shimizu ◽  
...  

ABSTRACTA novel method for preparing photoconductive Si thin films termed “Spontaneous Chemical Deposition”, is proposed, in which silane is decomposed spontaneously by gas phase reactions with fluorine at reduced pressure. With the external parameters in the gas phase reaction such as a gas flow ratio of SiH4 to F2 and the reaction pressure and temperature, the Si-network structure of the films can be controlled intentionally, resulting in a reduction of the hydrogen content, CH and a variety of the films from “amorphous” to “microcrystalline”.


Author(s):  
Victor N. Kondratiev ◽  
Evgeniĭ E. Nikitin

2012 ◽  
Vol 1 (1) ◽  
pp. P46-P53 ◽  
Author(s):  
Ran Zuo ◽  
Haiqun Yu ◽  
Nan Xu ◽  
Xiaokun He

1957 ◽  
Vol 79 (17) ◽  
pp. 4609-4616 ◽  
Author(s):  
Adon A. Gordus ◽  
John E. Willard

1993 ◽  
Vol 168 (2) ◽  
pp. 177-181 ◽  
Author(s):  
E Borsella ◽  
S Botti ◽  
R Alexandrescu ◽  
I Morjan ◽  
T Dikonimos-Makris ◽  
...  

The work described in this and the following paper is a continuation of that in parts I and II, devoted to elucidation of the mechanism of the reactions of methylene with chloroalkanes, with particular reference to the reactivities of singlet and triplet methylene in abstraction and insertion processes. The products of the reaction between methylene, prepared by the photolysis of ketene, and 1-chloropropane have been identified and estimated and their dependence on reactant pressures, photolysing wavelength and presence of foreign gases (oxygen and carbon mon­oxide) has been investigated. Both insertion and abstraction mechanisms contribute significantly to the over-all reaction, insertion being relatively much more important than with chloroethane. This type of process appears to be confined to singlet methylene. If, as seems likely, there is no insertion into C—Cl bonds under our conditions (see part IV), insertion into C2—H and C3—H bonds occurs in statistical ratio, approximately. On the other hand, the chlorine substituent reduces the probability of insertion into C—H bonds in its vicinity. As in the chloroethane system, both species of methylene show a high degree of selectivity in their abstraction reactions. We find that k S Cl / k S H >7.7, k T Cl / k T H < 0.14, where the k ’s are rate constants for abstraction, and the super- and subscripts indicate the species of methylene and the type of atom abstracted, respectively. Triplet methylene is discriminating in hydrogen abstraction from 1-C 3 H 7 Cl, the overall rates for atoms attached to C1, C2, C3 being in the ratios 2.63:1:0.


Sign in / Sign up

Export Citation Format

Share Document