ChemInform Abstract: Intramolecular Assistance of Electron Transfer from Heteroatom Compounds. Electrochemical Oxidation of 2-(2-Pyridyl)ethyl-Substituted Ethers, Sulfides, and Selenides.

ChemInform ◽  
2010 ◽  
Vol 31 (12) ◽  
pp. no-no
Author(s):  
Mitsuru Watanabe ◽  
Seiji Suga ◽  
Jun-ichi Yoshida
1985 ◽  
Vol 63 (11) ◽  
pp. 2983-2989 ◽  
Author(s):  
M. G. Fairbank ◽  
A. McAuley ◽  
P. R. Norman ◽  
O. Olubuyide

The preparation of [Ni(1,4,7-triazacyciodecane)2]3+, (Ni(10-aneN3)23+) is described. The existing procedure has been modified leading to good yields of the ligand trihydrochloride. The nickel(II) analogue (reported previously) is oxidised in a facile manner, either by Co3+aq in acidic aqueous media or by NO+ in CH3CN. Since the octahedral NiN6, chromophore is retained upon electron transfer, outer sphere reactions both of the Ni(II) and Ni(III) species have been studied. Rates of oxidation by various nickel(III) macrocycles have been measured and details are provided. Electrochemical oxidation of the Ni(II) complex is consistent with E0(Ni(10-aneN3)23+/2+) = 0.997 V (vs. NHE). The data have been used in a Marcus correlation, leading to the self-exchange rate k11 for the couple (Ni(10-aneN3)23+/2+) = (2 ± 1) × 104 M−1 s−1. This value is compared with other data derived using octahedral Ni(II)/Ni(III) centres. The oxidation of the Ni(II) complex by Co(III)aq has been studied in both protonated and deuterated media. There is no evidence for any proton transfer (from the N—H) being coupled to the electron transfer step. The observed rate constant for the reaction of Co3+ with Ni(II)(10-aneN3)22+ (550 M−1 s−1) may be compared with the calculated outer sphere rate (270 M−1 s−1). An estimate of k11 (CoOH2+/+) ~ 3 M−1 s−1 for the CoOH2+/+ exchange is discussed.


Sign in / Sign up

Export Citation Format

Share Document