rate constant
Recently Published Documents


TOTAL DOCUMENTS

4375
(FIVE YEARS 402)

H-INDEX

88
(FIVE YEARS 9)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Catherine Stark ◽  
Teanna Bautista-Leung ◽  
Joanna Siegfried ◽  
Daniel Herschlag

Cold temperature is prevalent across the biosphere and slows the rates of chemical reactions. Increased catalysis has been predicted to be a dominant adaptive trait of enzymes to reduced temperature, and this expectation has informed physical models for enzyme catalysis and influenced bioprospecting strategies. To systematically test rate enhancement as an adaptive trait to cold, we paired kinetic constants of 2223 enzyme reactions with their organism’s optimal growth temperature (TGrowth) and analyzed trends of rate constants as a function of TGrowth. These data do not support a general increase in rate enhancement in cold adaptation. In the model enzyme ketosteroid isomerase (KSI), there is prior evidence for temperature adaptation from a change in an active site residue that results in a tradeoff between activity and stability. Nevertheless, we found that little of the rate constant variation for 20 KSI variants was accounted for by TGrowth. In contrast, and consistent with prior expectations, we observed a correlation between stability and TGrowth across 433 proteins. These results suggest that temperature exerts a weaker selection pressure on enzyme rate constants than stability and that evolutionary forces other than temperature are responsible for the majority of enzymatic rate constant variation.


2022 ◽  
Vol 20 ◽  
pp. 271-288
Author(s):  
Pabitra Mohan Dash ◽  
Asini Baliarsingh ◽  
Sangram Keshori Mohaptra

An attempt has been taken in this work to effectively implement the combination of GSA and PSO (hGSA-PSO) technique towards AGC in two-area inter-connected power systems with generation rate constraint (GRC) is considered. For the design and analysis, a initial attempt has been taken to optimize parameters of proportional-integral-derivative (PID) controller in two area non-reheat thermal power system employing GSA and hGSA-PSO algorithm with ITAE objective function. A sensitivity studies carried out for the robustness of the system by changing the operating condition and variation of the parameter and generation rate constant (GRC= ±0.05 and ±0.025) is considered. The performances of the proposed controller has been evaluated with those of some previously published optimization techniques such as GA and BOFA based optimized controller parameters for the same power system. This study of the present work is extended to two area multi sources power system to test the robustness analysis of the system by comparing the hGSA-PSO optimized to PI controller with same structure of system by selecting with and without GRC for showing the dynamic performance analysis of the system in term of settling time and overshoot.


Author(s):  
Ngo Thi My Binh Ngo

Cubic Fe2O3 was synthesized in a facile approach by annealing molecular organic framework Prussian Blue (PB) at 350oC, 550oC, and 650oC. The final product was characterized by IR, Raman and XRD spectroscopic methods illustrating the presence of pure a-Fe2O3. SEM images of this material revealed a homogeneous morphology of microcube Fe2O3 with a size of about 500 nm. The catalytic activity of cubic Fe2O3 was investigated on the degradation of methylene blue in a heterogeneous Fenton system. It was shown that the thermally oxidative decomposition of PB at 550oC has resulted in porous Fe2O3 which exhibited highest MB degradation efficiency. In the presence of 0.5 M H2O2 and 0.3 g/L Fe2O3 at pH = 3.59, 50 ppm MB in studied solution has been removed at a rate constant of 0.0398 min-1, which is comparable with other analogous catalytic materials.


Fermentation ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Kampanat Phesatcha ◽  
Burarat Phesatcha ◽  
Metha Wanapat ◽  
Anusorn Cherdthong

The objective of the research was to evaluate the different levels of Mitragyna speciosa Korth leaves powder (MSLP) added to rations with 60:40 or 40:60 roughage to a concentrate (R:C ratio) on in vitro nutrient digestibility, rumen fermentation characteristics, microbial population, and methane (CH4) production. The treatments were arranged according to a 2 × 8 factorial arrangement in a completely randomized design. The two factors contain the R:C ratio (60:40 and 40:60) and the levels of MSLP addition (0, 1, 2, 3, 4, 5, 6, and 7% of the total substrate). There was no interaction between the R:C ratio and MSLP supplementation on gas production kinetics, ammonia nitrogen (NH3-N), and microbial populations. The gas production rate constant for the insoluble fraction (c) was increased by the R:C ratio at (40:60), whilst there was no difference obtained among treatments for cumulative gas production, whilst the gas production rate constant for the insoluble fraction (c) was increased by the R:C ratio at 40:60. The concentration of NH3-N was influenced by the R:C ratio and MSLP addition both at 4 and 8 h after incubation. In vitro dry matter degradability (IVDMD) and organic matter degradability (IVOMD) were significantly improved by the R:C ratio and supplementation of MSLP at 12 h. Increasing the R:C ratio and MSLP concentrations increased total volatile fatty acid (VFA) and propionic acid (C3) concentrations while decreasing acetic acid (C2) and butyric acid (C4) concentrations; thus, the C2:C3 ratio was reduced. MSLP addition reduced protozoa and methanogen populations (p < 0.05). The calculated CH4 production was decreased (p < 0.05) by the R:C ratios at 40:60 and supplementation of MSLP. Finally, the addition of MSLP as a phytonutrient may improve nutrient degradability and rumen fermentation properties while decreasing protozoa, methanogen population, and CH4 production.


Author(s):  
Jasvinder Kaur ◽  
Rajdeep Malik ◽  
Dushyant Gangwar

Salicylaldehyde (SA) is used in numerous biological, pharmaceutical, and industrial applications. Releasing effluents from these industries contaminates water. So the degradation of salicylaldehyde is necessitated. The electrochemical degradation of salicylaldehyde in buffered media was studied using the eco-friendly cyclic voltammetry (CV) technique on a platinum electrode at different scan rates. Kinetic and electrochemical parameters were evaluated for the reaction such as standard heterogeneous rate constant (k0,2.468×103 s-1 ), anodic electron transfer rate constant (kox,2.507×103 s-1), electron transfer coefficient of reaction (?,0.673), and formal potential (E0, 1.0937) under the influence of scan rate. The nature of the reaction is found to be diffusion controlled. The concentration study in the range of 1 mM to 4 mM was calibrated. The limit of detection and the limit of quantification were calculated to be 0.0031 mM and 0.0103 mM respectively.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 98
Author(s):  
Ambroise Lauby ◽  
Olivier Colomban ◽  
Pauline Corbaux ◽  
Julien Peron ◽  
Lilian Van Wagensveld ◽  
...  

Ovarian cancer is the gynecological cancer with the worst prognosis and the highest mortality rate because 75% of patients are diagnosed with advanced stage III–IV disease. About 50% of patients are now treated with neoadjuvant chemotherapy followed by interval debulking surgery (IDS). In that context, there is a need for accurate predictors of tumor primary chemosensitivity, as it may impact the feasibility of subsequent IDS. Across seven studies with more than 12,000 patients, including six large randomized clinical trials and a national cancer registry, along with a mega-analysis database with 5842 patients, the modeled CA-125 ELIMination rate constant K (KELIM), the calculation of which is based on the longitudinal kinetics during the first three cycles of platinum-based chemotherapy, was shown to be a reproducible indicator of tumor intrinsic chemosensitivity. Indeed, KELIM is strongly associated with the likelihood of complete IDS, subsequent platinum-free interval, progression-free survival, and overall survival, along with the efficacy of maintenance treatment with bevacizumab or veliparib. As a consequence, KELIM might be used to guide more subtly the medical and surgical treatments in a first-line setting. Moreover, it could be used to identify the patients with poorly chemosensitive disease, who will be the best candidates for innovative treatments meant to reverse the chemoresistance, such as cell cycle inhibitors or immunotherapy.


Toxics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 5
Author(s):  
Wenzhu Wu ◽  
Jing Xu ◽  
Yezhi Dou ◽  
Jia Yu ◽  
Deyang Kong ◽  
...  

This paper aims to understand the bioaccumulation of pyraoxystrobin in fish. Using a flow-through bioconcentration method, the bioconcentration factor (BCF) and clearance rate of pyraoxystrobin in zebrafish were measured. The measured BCF values were then compared to those estimated from three commonly used predication models. At the exposure concentrations of 0.1 μg/L and 1.0 μg/L, the maximum BCF values for pyraoxystrobin in fish were 820.8 and 265.9, and the absorption rate constants (K1) were 391.0 d−1 and 153.2 d−1, respectively. The maximum enrichment occurred at 12 d of exposure. At the two test concentrations, the clearance rate constant (K2) in zebrafish was 0.5795 and 0.4721, and the half-life (t1/2) was 3.84 d and 3.33 d, respectively. The measured BCF values were close to those estimated from bioconcentration predication models.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1439
Author(s):  
Yande Chao ◽  
Shulei Li ◽  
Lihui Gao ◽  
Lijuan Sun ◽  
Lingni Li ◽  
...  

Low flotation efficiency has always been a problem in the separation of low-grade molybdenum ores because of the finely disseminated nature and crystal anisotropy of molybdenite. In this study, a novel kerosene–coal tar collector (KCTC) was prepared and used to explore the feasibility of improving the recovery of fine molybdenite particles. The results showed that KCTC achieved better attaching performance than that shown by kerosene, and the surface coverage and attaching rate constant were improved significantly, especially for finer particles of −38 + 20 μm. Compared with kerosene, KCTC showed more affinity for molybdenite particles and greater adsorbed amounts of KCTC on molybdenite particles were achieved. Moreover, the composite collector was shown to float single molybdenite particles of different sizes, and it was found that the recovery of molybdenite particles of different sizes, particularly in the case of those at −20 μm, was improved dramatically by KCTC. The flotation results of actual molybdenum ores further confirmed that KCTC was beneficial to flotation recovery and the selectivity of molybdenite. This indicated that KCTC is a potential collector for the effective flotation of low-grade deposits of molybdenum ores, and more studies should be conducted on further use in industrial practice.


2021 ◽  
Vol 19 (11) ◽  
pp. 102-107
Author(s):  
Mohammed Kamilharmoosh ◽  
Mohsin A. Hassooni ◽  
Hadi J.M. Al-Agealy

The dye–semiconductor interface between N749 sensitized and zinc semiconductor (ZnSe) has been investigated and studied according to quantum transition theory with focusing on the electron transfer processes from the N749 sensitized (donor) to the ZnSe semiconductor (acceptor). The electron transfer rate constant and the orientation energy were studied and evaluated depended on the polarity of solvents according to refractive index and dielectric constant coefficient of solvents and ZnSe semiconductor. Attention focusing on the influence of orientation energies on the behavior of electron transfer rate constant. Differentdata of rate constant was discussion with orientation energy and effective driving energy for N749-ZnSe system. Furthermore, the electron transfer rate constant is increased with less orientation energy at less effective driving energy while the electron transfer rate constant increased with large orientation energy with large effective driving energy, as seen as the electron transfer rate reach to 1.3109 × 1011 with less orientation energy has 0.188708eV at effective driving energy E=0.22eV comparing the rate reach to 9.7207× 10−96 with driving energy E=1.89eV and same orientation energy. In general, the electron transfer rate constant increases with increases the coupling coefficient of system, its indicate that alignment of energy levels are very good between N749 sensitized metal and ZnSe semiconductor.


Author(s):  
Mirna Shamas ◽  
Mohamed Assali ◽  
Cuihong Zhang ◽  
Xiaofeng Tang ◽  
Weijun Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document